A greedy algorithm for multicut and integral multiflow in rooted trees - Archive ouverte HAL
Article Dans Une Revue Operations Research Letters Année : 2003

A greedy algorithm for multicut and integral multiflow in rooted trees

Résumé

We present an O(min(Kn,n2)) algorithm to solve the maximum integral multiflow and minimum multicut problems in rooted trees, where K is the number of commodities and n is the number of vertices. These problems are NP-hard in undirected trees but polynomial in directed trees. In the algorithm we propose, we first use a greedy procedure to build the multiflow then we use duality properties to obtain the multicut and prove the optimality.
Fichier principal
Vignette du fichier
ArticleORLCostaLetocartRoupin.pdf (198.18 Ko) Télécharger le fichier

Dates et versions

hal-00003244 , version 1 (09-11-2004)

Identifiants

  • HAL Id : hal-00003244 , version 1

Citer

Marie-Christine Costa, Lucas Létocart, Frédéric Roupin. A greedy algorithm for multicut and integral multiflow in rooted trees. Operations Research Letters, 2003, 31, pp.21-27. ⟨hal-00003244⟩
109 Consultations
219 Téléchargements

Partager

More