N

N

A greedy algorithm for multicut and integral multiflow
in rooted trees

Marie-Christine Costa, Lucas Létocart, Frédéric Roupin

» To cite this version:

Marie-Christine Costa, Lucas Létocart, Frédéric Roupin. A greedy algorithm for multicut and integral
multiflow in rooted trees. Operations Research Letters, 2003, 31, pp.21-27. hal-00003244

HAL Id: hal-00003244
https://hal.science/hal-00003244
Submitted on 9 Nov 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00003244
https://hal.archives-ouvertes.fr

A GREEDY ALGORITHM FOR MULTICUT AND INTEGRAL MULTIFLOW
IN ROOTED TREES

MARIE-CHRISTINE COSTA !, LUCAS LETOCART ! AND FREDERIC ROUPIN 2

(1) CEDRIC, CNAM, 292 rue St-Martin 75141 Paris cedez 03, France.
(2) CEDRIC, CNAM-IIE, 18 allée Jean Rostand 91025 Evry cedez, France.

e-mails : {costa,letocart } @cnam.fr, roupin@iie.cnam.fr.

ABstracT. We present an O (mm (Kn,n2)) algorithm to solve the maximum integral multi-
flow and minimum multicut problems in rooted trees, where K is the number of commodities
and n is the number of vertices. These problems are NP-hard in undirected trees but polyno-
mial in directed trees. In the algorithm we propose, we first use a greedy procedure to build the

multiflow then we use duality properties to obtain the multicut and prove the optimality.

keywords. maximum integral multiflow, minimum multicut, duality, rooted tree.

1. INTRODUCTION

Consider a graph G = (V, E) with a positive capacity (or weight) on each edge of E and a list of
K pairs of vertices {sg,tx}, k € {1,.., K}. Associate a commodity with each vertex pair {sg,t}.
The integral multiflow problem consists in maximizing the sum over all commodities of the integral
flow corresponding to a commodity subject to capacity and flow conservation requirements. The
multicut problem is to find a minimum weight set of edges whose removal separates each pair
{8k, tr} of the list. For K = 1 the problems are the ordinary min cut-max flow problem solvable
in polynomial time but both problems are known to be NP-hard and even MAX SNP-hard for
K > 3]2], [3]. Garg, Vazirani and Yannakakis [4] proved that these complexity results hold even if
the graph is a tree. However, they give a polynomial algorithm for the integral multiflow in trees
with unit capacities on the edges. Nevertheless, these problems are polynomial for any directed
tree i.e. for any tree in which edges can be oriented to obtain a (unique) directed path from s
to t; for each k. In fact, the multiflow problem in a di-tree can be reduced to a minimum cost
circulation problem in a directed graph obtained by adding to the tree the edges from ¢, to sy for all
k € {1,..,K}: costs are set to -1 on the added edges and set to 0 on the original edges. Polynomial
algorithms were proposed for the circulation problem [5] and can be used for the multiflow problem

in a tree; the most efficient was proposed by Orlin [6] and is in O ((m + nlogn) mlogn) where m is
1

the number of edges and n is the number of vertices. The number of edges of the derived di-graph
is n 4+ K — 1 thus the overall complexity of Orlin’s algorithm is here O (maz (K?logn, n*log?n)).
In this paper, we propose a greedy algorithm in O (min (Kn,n?)) to solve the integral multiflow
and multicut problems in a rooted tree, i.e. a directed tree admitting a vertex, the root, from
which there is a path to any other vertex.

The paper is organized as follows. In the next section we give the mathematical models of the
problems and we recall the dual relationship of their continuous relaxations [3], [7]. In section 3
we use this duality to build the greedy algorithm in a rooted tree and prove its correctness. Next

we evaluate its complexity before concluding.

2. TWO CONTINUOUS DUAL PROBLEMS

Shmoys [7] presents the dual relationship between the integral multiflow and multicut problems
in general graphs (see also [3]). Let us give the models when the graph is a tree T = (V, E). The
models and all the results hereafter are valid if T is a rooted tree. For each edge e of E, denote
by u. the capacity of the edge e (u. is assumed to be positive and integral). Let pi be the path
from sy to ty and let f, k € {1,.., K} and ce, e € E, be the variables: f} is the flow on the path
pr and ¢, = 1 if the edge e belongs to the cut, c. = 0 otherwise. The integral multiflow problem

(IMFP) and the s — t; multicut problem (IMCP) can be formulated as:

(IMFP) (IMCP)

Max SN fk Min > e Ue Ce

s. t. Dkstecp, [k Sue Ve€E (1) s. t. Deep Ce 21 VEE{L ., K} (2)
fr €N Vk e {1,.,K} ce € {0,1} Ve € E

Denote by (CMFP) and (CMCP) the continuous relaxations obtained from (IMFP) and
(IMCP) by replacing the integrality constraints by nonnegativity constraints (note that con-
straints ¢, < 1 Ve € F are useless). Let f* and ¢* be optimal solutions of (CM FP) and (CMCP).
(CMFP) and (CMCP) are two dual linear programs and the complementary slackness conditions

of optimality in linear programming are given by:
Veke{l,.,.K} fp>0 =3 ., c=1 (3)
Vee E >0 =3, stecpy Jh = Ue 4)

The constraints (3) imply that if the variables ¢ are integral then they define the incident

vector of a multicut C, and there is exactly one edge of p; in C for all k£ such that f; > 0. The
2

constraints (4) imply that if the variables f; and ¢} are integral then all the edges in the associated
multicut C' are saturated edges, i.e. edges with residual capacities equal to zero.

If the graph is a directed tree, the constraint matrix in the program (IM FP) is a submatrix
of a Chain matrix. Recall that a Chain matrix is a matrix whose columns are all the edge vectors
of directed paths in a graph. P. Camion [1] showed that the Chain matrix defined in a directed
tree is totally unimodular. Therefore the constraint matrix of the multiflow is totally unimodular
and the constraint matrix of the dual multicut program (IMCP) is totally unimodular too. The
integral multiflow and multicut problems in directed trees can be solved by linear programming
and so are polynomial. This is also a consequence of the reduction to a minimum cost circulation
problem in a directed graph as shown in the introduction. In the next section, we present a greedy
algorithm to solve both problems in rooted trees. Unfortunately, we shall see that it cannot be

applied to a directed tree which does not admit a root.

3. A GREEDY ALGORITHM IN ROOTED TREES

We assume in this section that the graph is a rooted tree and we propose to solve first the
integral multiflow problem (subsection 3.1) and then the multicut problem (subsection 3.2). The
basic idea of the algorithm is to find integral solutions verifying the complementary slackness
conditions. The proof of correctness and the complexity evaluation of our algorithm are given

respectively in subsections 3.3 and 3.4.

3.1. The integral multicommodity flow procedure. The procedure begins with the leaves
of the rooted tree and then covers the nodes level by level up to the root, widthwise. Each time a
source sy is encountered a maximal quantity of flow is routed on py, saturating at least one new
edge if fr > 0. If there is more than one source in a node, any order can be considered for these
sources. See procedure Maxmulti flow hereafter and figure 1 for an example. The procedure is
valid for any value of K. However, to improve its complexity in the case K = O(n?) we need to
slightly modify it: the changes are indicated in square brackets in the procedure.

The edge set Cy C E will contain edges saturated all along the procedure. If the capacities of
the edges are integers, then all the routed flows f, are integers. At the end of the procedure the
value of the integral multiflow Fis equal to & = Zszl fi and there is at least one saturated edge

(in Cp) on each path py.

3.2. The multicut procedure. The multicut is built from the multiflow solution obtained in

subsection 3.1. The procedure considers the sources in the order given by the numbering obtained
3

procedure Maxmultiflow;
input : T = (V,E), let a,b,c, ... be a breadth-first lexicographic ordering on the vertices of V' (obtained in O(n))
(sk, ty) EV? Vke€ {1,...,K}.
output : (f;, SR A f%) a maximal multifiow. Co the set of edges saturated by the multiflow
1. Number the flows considering the sources from the root down to the leaves widthwise;
2. Co « 0; [if K = O (n®) then add : L « list {fx, fx—1,--- f1}]
3. for k=K to 1 do [if K = O (n®) then replace by while L # 0 do]
[if K = O (n®) then add k <index of the first flow of L]
//from the leaves up to the root
route the maximal flow from s, to t;, f;, with respect to the current residual capacities;
E}, +{new edges saturated by f;'}; [if K = O (n®) then add :L < L — {fi};]
Co + CoU Ek; //there is at least one more edge in Co if fi >0
[ifK=0 (nz) then add : for f; such that p; N E, # 0 do f} < 0; L < L —{f;} end do;
//3 a saturated edge in p; |
end do;

end Maxmultiflow;

by Maxmultiflow, from the root down to the leaves. In order to satisfy the complementary
slackness conditions (4) all the edges of the cut are selected from Cj and so are saturated edges.
Moreover, in order to satisfy constraints (3), we keep only one edge e on each path pj such that
fi > 0. At step k, e is either the only or the “highest” remaining saturated edge on py, the highest
saturated edge being the first saturated edge encountered on the path from the source s to the
sink t; then we definitively remove all the other saturated edges belonging to pi. Doing so we get
a set C C E which contains at most one edge on each path p such that f; > 0. See procedure
Minmulticut and figure 1 for an example. Let T’ be the value of the set 5, ['=) caUe Inthe

next section we shall prove that C is a multicut and that T = &.

procedure Minmulticut
input : T =(V,E), sy —tx ke€{l,..,K}, f*, Co={edges saturated by the multifiow}
output : a minimal multicut C.
for k =1 to K do //numbering given by Maxmultiflow
//paths and flows are considered from the root down to the leaves
if fif >0 and |Ck_1[\pr| > 1 then
//only one edge of C allowed on py,
er « first saturated edge on the path from sgtoty;
Crt [Cr-1 — (Cr—1 Npr)] U {ex};
//Cr-1 [Pk is a set of edges with a residual capacity equal to zero
//suppress all the edges of pi, in Cr_1 except ey,

else
//either fr >0 and there is at most one remaining edge of py in Cr_1
//or fr =0 and more than one edge ofa are allowed on pr. Nothing to do
Cr¢ Cr_1;
endif;
end do;
C’ — CK;

end Minmulticut;

FIGURE 1. Application of the algorithm in a rooted tree

3.3. Optimality of the algorithm. To prove the optimality of the algorithm, we first show that
the cut C is indeed a multicut whose removal separates each pair {sk,tr}, k € {1,.., K}, and then

that there is no duality gap between the multiflow and the multicut values.

Lemma 1. The set C C FE obtained at the end of the algorithm contains at least one edge on each

path py, from sy to tg, k € {1,..,K}: C is a multicut.

Proof. The proof is obtained by induction on . From the principle of the Maxzmultiflow proce-
dure, we know that there is at least one edge of each py, k € {1, .., K}, in the set Cy. We suppose
that this property holds for the set C;_; (i > 0).

Let us show that the property holds for C;.

If f¥ =0 then C; = C;—1 and the property holds for C;. The next step is to study C; [ps for
i such that fF > 0, and for all the paths pg, k € {1,..,K}.

There is at least one edge of p; in C;_; and at step ¢ in the Minmulticut procedure we keep
one of these edges, so the property is true for k = 1.

Consider now the paths py, k € {1,..,K}, k # i: they belong to one of the three classes
hereafter:

(a) prNpi = 0. There was an edge of py in C;_; and at step ¢ we only suppress edges of p;
to get C;; so there is an edge of py in C; too.

(b) pr N pi # Pand k < i. Then C; C C;_1 C Ck. By the hypothesis, there exists an edge ey,
of pr in C;_1 and by Minmulticut, ey, is the only edge of py in C, so ey is the only edge of py in
Ci—1. Moreover, e, is not suppressed by Minmulticut at step i because either ey ¢ p; or ey, is the
first saturated edge on the path from s; to ¢; (because ey, is the first saturated edge on py, ey € p;
and s; is on pg) and so ep= e; (recall that for j in {1,..., K}, e; is the first saturated edge on the
path p;).

(c) peNpi # Dandk > i. Then, Cy—1 C C;. A saturated edge v exists in pj after fj being

routed and before routing f;. For all j such that j < k and f} > 0 we have v ¢ p; (otherwise f;
5

being routed after fi would be equal to 0). v € Cy and v cannot be suppressed at any step j < k
in Minmulticut; so v € C_1 and then v € Cj.

We conclude that for all k € {1,.., K} there is an edge of p in C;: C; is a multicut. |

Lemma 2. Let & and T’ be the values of the integral multiflow F and of the multicut C obtained
at the end of the algorithm. Then ® =T, F is a mazimum integral multicommodity flow and C

18 a minimum multicut.

Proof. At the end of the algorithm, C contains one and only one edge on each path pj, such that
fix > 0. The solution of the program (IMCP) is given by: ¢} = 1if e € C; ¢ = 0 otherwise;
forallee E. The complementary slackness conditions are verified: if f; > 0 for some £ then, from
the Minmulticut and the M axmulti flow procedures we know that there is one and only one edge
of p in C so >
c; > 0 for some e then > , , ., fi = ue. The solutions of (/M FP) and (IMCP) associated

cepy Ce = 1; moreover, all edges in C belong to Cy and are saturated edges, so if
with F and C satisfy the complementary slackness conditions of linear programming, so they are

optimal and & =T O

3.4. Complexity of the algorithm. First, it is easy to verify that Minmulticut can be im-
plemented within an O (min (Kn, n?)) complexity. Indeed, for all k € {1,...,K}, |Cx| < n and
the path p;, has less than n edges. There are at most min(K, n) positive flows f; and the com-
putation of e and Cy needs O(n) time. The else part is in O(K). The overall complexity is
O (nmin (K,n) + K) i.e. O (min (Kn, n?)).

Second, we claim that the procedure Maxmultiflow can be implemented also within an
O (min (Kn, n?)) complexity. First, at step 1, each source is seen once, so this step can be
done in O (maz (K,n)) time. Second, let us consider step 3. Routing each flow fj takes at most
O (n) time in a tree. Now we study two different cases.

If K = O (n) then step 3 takes O (Kn) time.

IfTK=0 (n2) we need a special datastructure.

We use a linked-list L of the flows ordered from fx to fi (last line of figure 2) and a list of edges
of E ordered according to the lexicographic order (first line of figure 2). In addition, we build
all paths of T into our datastructure: in level j of the datastructure we list all paths of length j,
defining a pointer from an edge e at level 1 and a path p at level j to a path ¢ at level j + 1 (if ¢
is obtained from p by adding e at the end of it). We also define a pointer from each path to the

corresponding flow in the last level. Thus we have at most two pointers to each path at each level
6

fr is routed (f7 =2) and removed from L, the edge fh is saturated;
fh, ch, ah and f1 are removed from the datastructure, f; is set to 0.

FIGURE 2. K = O (n?) : datastructure associated to figure 1

j > 2. The pointers describe inclusions of paths (not all inclusions, but enough to ensure that all
paths containing an edge e are reachable from e in our datastructure). Indeed, there are several
ways to obtain a path of length j (j > 2): we have chosen to add an edge at the end of a path of
length j — 1. For example, the path ah of figure 1 is obtained from af and fh (and not from ab
and bh).

The vertices being labelled following a breadth-first lexicographic order, to build the list of level
j we need to traverse once the list j — 1 and at the same time once the list of level 1. The list of
level 1 is ordered in a lexicographical way and thus the lists of level 2, ..., j are naturally obtained
in the lexicographic order in O (n).

There are at most n — 1 paths of length j for any j in {1,...,n — 1}, the total number of paths
is thus at most n2, and the total number of pointers is less than 2n?. We set a pointer from each
path to the corresponding flow in L if it exists (K pointers). Finally, the total number of pointers
is less than 2n* 4+ K, and the overall complexity to build our data strucure is O (n?).

At each step of loop 3 of our procedure Mazmultiflow, first we route a positive flow f; and
remove it from L. Second we consider the new saturated edges. Third, thanks to our datastructure,
we set to zero and remove from the datastructure all flows corresponding to paths containing a
new saturated edge. There are at most n positive flows to route. Each routing takes O (n) time
and implies the removal of a part of the datastructure. Hence, the total routing time is in O (n2)
and the datastructure is traversed once to remove its O (n2) items: the whole complexity of
Mazmulti flow when K = O (n?) is O (n?).

Finally, the procedure Mazmultiflow is in O (min (Kn, n®)) as the procedure Minmulticut.

This means that the global complexity is O (min (Kn, n?)).
7

4. CONCLUSION

We have proposed an O (min (K n, nz)) algorithm for integral multicommodity flow and multi-
cut problems in rooted trees. Unfortunately, the greedy procedure for rooted trees defined in this
paper and adapted to general ditrees does not work. Just consider the simple counter-example
obtained by slightly modifying the example given in Figure 1: we add to the tree an edge (a'b) with
weight ue, = 1 and a flow fo with s = a’ and tyg = e. The solution obtained by the algorithm is the
solution of Figure 1 with fo = 0 and ® = 7 whereas the optimal solution is F* = (1,0,0,2,0,0, 3,2)
with ®* = 8. We have tried many different numberings of the commodities unsuccessfully: for
each one we have found a counter-example.

Using Orlin’s algorithm to solve max multiflow in di-trees (see introduction for details), one
gets an overall complexity of O (n’log?n) when K = O (n) and O (n*logn) when K = O (n?).
Our algorithm is better than Orlin’s one regarding the complexity (in rooted trees), which is
not surprising since Orlin’s algorithm can be applied on a more general problem. Moreover, our
algorithm provides an optimal multicut.

We thank the referee for her numerous and constructive remarks, especially about the similarity

to the circulation problem.

REFERENCES

[1] P. Camion. 1963. Matrices totalement unimodulaires et problémes combinatoires. Université de Bruxelles, Thése
et Rapport Euratom.

[2] E. Dalhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. 1994. The complexity of
multiterminal cuts. SIAM J. Comput 23, 864-894.

[3] N. Garg, V.V. Vazirani and M. Yannakakis. 1996. Approximate max-flow min-(multi)cut theorems and their
applications. STAM J. Comput. 25, 2. 235-251.

[4] N. Garg, V.V. Vazirani and M. Yannakakis. 1997. Primal-Dual approximation algorithms for integral flow and
multicut in trees. Algorithmica 18, 3-20.

[5] A. V. Goldberg, E. Tardos ans R.E. Tarjan. Network flow algorithms. In B. Korte, L. Lovasz, H.J. Promel and
A. Schrijver. 1990. Paths, Flows and VLSI-Layout. Algorithms and combinatorics 9. Springer-Verlag. Berlin.
329-371.

[6] J.B. Orlin. 1993. A faster strongly polynomial minimum cost flow algorithm. Operations research. 41,2. 338-349.

[7] D. B. Shmoys. 1997. Cut problems and their application to divide-and-conquer. In D. Hochbaum. Approzimation

algorithms for NP-hard problems. PWS Publishing Company. Boston. 192-234.

