On the Lie envelopping algebra of a pre-Lie algebra - Archive ouverte HAL
Article Dans Une Revue Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology Année : 2008

On the Lie envelopping algebra of a pre-Lie algebra

Résumé

We construct an associative product on the symmetric module S(L) of any pre-Lie algebra L. Then we proove that in the case of rooted trees our construction is dual to that of Connes and Kreimer. We also show that symmetric brace algebras and pre-Lie algebras are the same. Finally, using brace algebras instead of pre-Lie algebras, we give a similar interpretation of Foissy's Hopf algebra of planar rooted trees.
Fichier principal
Vignette du fichier
Trees.pdf (198.47 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00001485 , version 1 (26-04-2004)

Identifiants

Citer

Jean-Michel Oudom, Daniel Guin. On the Lie envelopping algebra of a pre-Lie algebra. Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology, 2008, 2, pp.147-167. ⟨10.1017/is008001011jkt037⟩. ⟨hal-00001485⟩
139 Consultations
697 Téléchargements

Altmetric

Partager

More