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For the last five years, many combinatorics Hopf algebras were introduced in different
settings. One can quote the Hopf algebras of C. Brouder and A. Frabetti [2], A. Connes and
D. Kreimer [6], L. Foissy [7], R. Grossman and R.-G. Larson [10], J.-L. Loday and M. Ronco
[15], I. Moerdijk and P. van der Laan[17] [22].

In this paper, our aim is to show that a lot of these Hopf algebras are related to general
algebraic constructions. In the commutative (or cocommutative) case, the key algebraic
structure is the pre-Lie algebra one, as noticed by Chapoton and Livernet [3]. In the non
commutative and non cocommutative case, it seems to be played by brace algebras.

In the first part, we recall the definition of a pre-Lie algebra and give some examples.
The second part is devoted to the construction of an explicit ∗ product on the symmetric
(co)algebra S(L) of any pre-Lie algebra L. Then, we prove that (S(L), ∗,∆) is isomorphic to
the enveloping algebra of LLie. In the third part, we study the case where L is the pre-Lie
algebra of rooted trees, and we show that our construction corresponds to the dual of Connes
and Kreimer’s one. This gives another proof of the duality between the Connes-Kreimer and
Grossman-Larson Hopf algebras [6] [19] [12]. In the following part, we use the products ∗
and ◦ of the first part, in order to show that symmetric brace algebras introduced in [14] are
nothing else but pre-Lie algebras. Finally, in the fifth part, we recall the construction of a
Hopf algebra structure on the tensor (co)algebra T (V ) of any brace algebra V and we show
that Foissy’s Hopf algebra of planar rooted trees belongs to this general setting.

From here we fix a commutative ring k over which modules, algebras, tensor products and
linear maps are taken.

1 Pre-Lie algebras.

Definition 1.1.

A pre-Lie algebra is a module L equipped with a bilinear product ◦ whose associator is
symmetric in the two last variables :

X ◦ (Y ◦ Z) − (X ◦ Y ) ◦ Z = X ◦ (Z ◦ Y ) − (X ◦ Z) ◦ Y.

These algebras were also called right symmetric algebras, Koszul-Vinberg or Vinberg algebras.
Here, we use the terminology of F. Chapoton and M. Livernet in [3]. There’s no difficulty to
give a graded version of pre-Lie algebras by replacing the above identity by :

X ◦ (Y ◦ Z) − (X ◦ Y ) ◦ Z = (−1)|Y ||Z|(X ◦ (Z ◦ Y ) − (X ◦ Z) ◦ Y ).
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where the three variables are homogeneous and | − | denotes the degree.

Let us now recall a well known fact, which is the root of the interest that people have shown
in pre-Lie algebras :

Proposition 1.2.

Let (L, ◦) be a pre-Lie algebra. The following bracket

[X,Y ] = X ◦ Y − Y ◦ X

makes L into a Lie algebra, which we will denote LLie.

In the following, we recall some classical and more recent examples.

1.1 First examples.

As its associator is symmetric in all three variables, an associative algebra is, of course, a
pre-Lie algebra. But the pre-Lie structure is in fact related to a weaker kind of associativity :
the associativity of the composition of multi-variables functions. M. Gerstenhaber already
noted this fact in the Hochschild cohomology setting [8] :

Example 1.1.1. Deformation complexes of algebras.

Let V be a module and let us denote Cn(V, V ) the space of all n-multilinear maps from V to
V . For f ∈ Cp(V, V ), g ∈ Cq(V, V ) and i ∈ J1, pK, one can define :

f ◦i g(x1, · · · · · · , xp+q−1) := f(x1, · · · , xi−1, g(xi, · · · , xi+q−1), xi+q, · · · , xp+q−1)

f ◦ g =
p∑

i=1
f ◦i g

Then the product ◦ makes C•(V, V ) a pre-Lie algebra. In [8], M. Gerstenhaber gave a graded
version of this product on the Hochschild cohomology complex C•(A,A) of an associative
algebra A :

f ◦i g(x1, · · · , xp+q−1) := (−1)(p−1)(i−1)f(x1, ··, xi−1, g(xi, ··, xi+q−1), xi+q, ··, xp+q−1).

Then, he showed that, in characteristic different from 2, the graded Lie algebra induced by
this graded pre-Lie structure controls the deformations of A.
More generally, D. Balavoine gave in [1] a similar graded Lie algebra construction on the co-
homology complex of an algebra over any quadratic operad, which controls the given algebra’s
deformations.

Example 1.1.2. Operads.

An operad is a sequence of modules (P (n)n≥2, where each P (n) is a k[Sn]-module. For every
i between 1 and n, we have a ◦i operation :

◦i : P (n) ⊗ P (m) −→ P (n + m − 1)

satisfying the following conditions of associativity :

f ◦i (g ◦j h) = (f ◦i g) ◦i+j−1 h

(f ◦i g) ◦|g|+i+j−1 h = (f ◦j h) ◦|h|+i+j−1 g

This ◦i-operations should moreover be some way compatible with the k[Sn]-actions. There
is no difficulty to check that the product :

f ◦ g =

|f |
∑

i=1

f ◦i g

defines a pre-Lie product on
⊕

n≥2
P (n).
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1.2 A geometric example : affine manifolds.

An affine manifold is a manifold with a torsion free and flat connection ∇. Equivalently, it is
a manifold equipped with an atlas with affine transition functions. The vector fields of such
a manifold is a pre-Lie algebra for the following circle product :

X ◦ Y = ∇X(Y ),

whose associated Lie bracket is the usual one.

1.3 The inspiring example : rooted trees.

Definition 1.3.1. A rooted tree is a tree with a distinguished vertex : its root. A combina-
torial definition could be the following : it is a finite poset with a minimum (the root) and
no critical pair :

x

y z

t

y

z

z

y
=⇒ or

For any rooted tree T , we denote |T | the underlying set and we call its vertices of T its
elements. Let X be a set. A X-colored rooted tree is a rooted tree T equipped with a color
map |T | → X, which associates its color in X to every vertex of T .

We will represent trees by using planar graphs and the order induced by the gravity :

= =

Here are two different colored trees with the same underlying tree :

6=

For two given rooted trees T1 and T2, and a chosen vertex v of T1, we can glue T1 on v. The
rooted tree T1 ◦v T2 obtained in such a way is the poset whose underlying set is the disjoint
union |T1| ∐ |T2|. The order is induced by the orders of T1 and T2 and w > v for all w in T2 :

v

v

:=
◦v

Notice that, when T1 and T2 are colored by a set X, then T1 ◦v T2 is a X-colored rooted tree,
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whose color map is the disjoint union of the two color maps of T1 and T2.

Proposition 1.3.2.

Let us denote PL(X) the free module whose base is the set of X-colored rooted trees. We
define on PL(X) the following ◦ product :

T1 ◦ T2 =
∑

v∈|T1|

T1 ◦v T2

Then (PL(X), ◦) is a pre-Lie algebra.

Proof. It follows from the following identity :

(T1 ◦ T2) ◦ T3 − T1 ◦ (T2 ◦ T3) =
∑

v,w∈|T1|

(T1 ◦v T2) ◦w T3 =
∑

v,w∈|T1|

(T1 ◦w T3) ◦v T2

which can be illustrated by the the following picture :

◦ ◦ − ◦ ◦
T1 T2 T1 T2

= + 2× + 2× + 2× + 2×

T1 T2

T1 T2 T1 T2 T1

T2 T1

T2

Remark 1.3.3. F. Chapoton and M. Livernet have shown in [3] that PL(X) is the free
pre-Lie algebra generated by X. We will give a (not so) different proof of this fact in section
3.

1.4 Other graphical examples.

As pointed out in the first examples, the pre-Lie algebra structure is related to a kind of weak
associativity, a symmetric substitution associativity. This weak associativity often appears
in the world of graphs. The previous example is based on graftings, and we can extend
this grafting product to graphs with a marked vertex. For two pointed graphs (G1, •1) and
(G2, •2), one can graft •2 on each vertex of G1. If we take the sum of all this grapftings, we
get a pre-Lie product on the free modules generated by the finite pointed graphs :

◦ = + 2×

Moreover, one can form pre-Lie algebra structures on graphs by using an insertion process.
For instance, one can define a pre-Lie algebra product on the free module generated by the
finite graphs, where the product of two graphs G1 and G2 is the sum of all possible insertions
of G2 in G1. Here, an insertion of G2 in G1 consists in choosing a non univalent vertex v

of G1 and a bijection ϕ from the set of univalent vertices of G2 to the set of edges of v. To
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obtain the resulting graph, we suppress the vertex v and glue the univalent vertices to the
edges of v according to ϕ :

◦ϕ

ϕ

ϕ

ϕ

=

F. Chapoton has proposed a similar insertion example in [4].

2 The ◦ and ∗ products on S(L).

Notation 2.1.

Let L be a pre-Lie algebra. We denote S(L) its symmetric algebra with the usual shuffle
coproduct denoted ∆. We will use without restraint the classical Sweedler’s notations :
∆(A) = A(1) ⊗ A(2).

Our aim in the following is to extend the ◦ product of L to the whole S(L). Then, we will
be able to define an associative product ∗ on S(L). First, let us extend ◦ as a right L-action
on S(L) :

Notation 2.2.

Let T , X1, . . . , Xn be in L, and set :

1 ◦ T := 0 and (X1 · · ·Xn) ◦ T :=
∑

1≤i≤n

· · · (Xi ◦ T ) · · ·

Remark 2.3. It’s not difficult to see that this action is right symmetric :

A ◦ (X ◦ Y ) − (A ◦ X) ◦ Y = A ◦ (Y ◦ X) − (A ◦ Y ) ◦ X

where A ∈ S(L) and X, Y are in L.

Now, we define T ◦ A where A is a monomial of S(L) and T belongs to L :

Definition 2.4.

We define inductively multilinear maps :

◦(n) : L ⊗ L⊗n −→ L

T ⊗ A 7−→ T ◦ A

by the following way : T ◦ 1 := T and for X ∈ L, B in S(L) and A = BX,

T ◦(n) A := (T ◦(n−1) B) ◦ X − T ◦(n−1) (B ◦ X).

Lemma 2.5.

For every integer n, the map ◦(n) is symmetric in the n last variables. Therefore, it defines a
map :

◦(n) : L ⊗ SnL −→ L

T ⊗ A 7−→ T ◦ A

Proof. The invariance by permutation of the last variables is obtained by induction on n :

T ◦(n+2) AXY = (T ◦(n+1) AX) ◦ Y − T ◦(n+1) (AX ◦ Y )

= ((T ◦(n) A) ◦ X) ◦ Y − (T ◦(n) (A ◦ X)) ◦ Y

−T ◦(n+1) (A ◦ Y )X − T ◦(n+1) A(X ◦ Y )

= ((T ◦(n) A) ◦ X) ◦ Y − (T ◦(n) (A ◦ X)) ◦ Y

−(T ◦(n) (A ◦ Y )) ◦ X + T ◦(n) ((A ◦ Y ) ◦ X)

−(T ◦(n) A) ◦ (X ◦ Y ) + T ◦(n) (A ◦ (X ◦ Y ))
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In the above equality, it follows from the pre-Lie identity that the first terms of the first
and third lines give rise to an expression symmetric in X and Y . By (2.3), the sum of the
last terms of the two last lines is also symmetric in X and Y . Finally, the sum of the two
remaining terms is obviously symmetric in X and Y .

By this way, we get the invariance by the transposition (n−1, n). If we assume the symmetry
of ◦(n−1), we have the symmetry in the n − 1 variables of AX. Thus, as Sn is generated by
(n − 1, n) and Sn−1 × S1, we get the announced invariance.

Remark 2.6. In terms of operads, these ◦(n) operations were introduced by F. Chapoton
and M. Livernet in [3].

Proposition 2.7.

There’s a unique extension of the product ◦ to S(L) such that :






(i) A ◦ 1 = A

(ii) T ◦ BX = (T ◦ B) ◦ X − T ◦ (B ◦ X)
(iii) AB ◦ C = (A ◦ C(1))(B ◦ C(2))

where A, B, C belong to S(L) and X is in L.

Proof. First, notice that, according to (i) and (iii), we necessarily have 1 ◦ T = 0 for every T

in L. Thus, we have, by induction and (iii), 1 ◦ A = ε(A) for all A in S(L), where ε denotes
the counit of (S(L),∆).

We also get by induction, (i) and (iii) :

(X1 · · ·Xn) ◦ T =
∑

1≤i≤n

· · · (Xi ◦ T ) · · ·

It follows from (ii) that, for all monomial A of length n : T ◦ A = T ◦(n) A.

Then, (iii) gives the definition of A ◦ B for any monomials A and B. Thanks to the coasso-
ciativity and cocommutativity of ∆, this definition is not ambiguous :

(A ◦ C(1))(B ◦ C(2)) = (B ◦ C(2))(A ◦ C(1))

= (B ◦ C(1))(A ◦ C(2))

(AB ◦ D(1))(C ◦ D(2)) = (A ◦ D(1))(B ◦ D(2))(C ◦ D(3))

= (A ◦ D(1))(BC ◦ D(2))

Proposition 2.8.

Let A, B, C be in S(L) and let X be in L. We have :

(i) 1 ◦ A = ε(A)
(ii) ε(A ◦ B) = ε(A)ε(B)
(iii) ∆(A ◦ B) = (A(1) ◦ B(1)) ⊗ (A(2) ◦ B(2))

(iv) A ◦ BX = (A ◦ B) ◦ X − A ◦ (B ◦ X),
(v) (A ◦ B) ◦ C = A ◦ ((B ◦ C(1))C(2)).

Proof. We have already seen (i) in the proof of (2.6.). The (ii) part follows from the fact that
1 ◦ 1 = 1. Moreover, when A is a monomial, A ◦ B has the same length as A.

We get (iii) by induction on the length of A. When A is of length 0, we deduce from (i) that :
∆(A ◦ B) = ε(A)ε(B)1 ⊗ 1 = ∆(A) ◦ ∆(B). Then, we use (2.6.iii) to decrease the length of
A :
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∆(AB ◦ C) = ∆((A ◦ C(1))(B ◦ C(2)))

= ∆(A ◦ C(1))∆(B ◦ C(2))

= (A(1) ◦ C(1) ⊗ A(2) ◦ C(2))(B(1) ◦ C(3) ⊗ B(2) ◦ C(4))

= (A(1) ◦ C(1))(B(1) ◦ C(2)) ⊗ (A(2) ◦ C(3))(B(2) ◦ C(4))

= (A(1)B(1) ◦ C(1)) ⊗ (A(2)B(2) ◦ C(2)) from (2.6.iii)

= ∆(AB) ◦ ∆(C).

We get (iv) from (2.6.ii), (2.6.iii) and the above (iii) by induction on the length of A. When
A is of length 0, everything is null.

AB ◦ CX = (A ◦ C(1)X)(B ◦ C(2)) + (A ◦ C(1))(B ◦ C(2)X)

= ((A ◦ C(1)) ◦ X)(B ◦ C(2)) − (A ◦ (C(1) ◦ X))(B ◦ C(2))

+(A ◦ C(1))((B ◦ C(2)) ◦ X) − (A ◦ C(1))(B ◦ (C(2) ◦ X))

= ((A ◦ C(1))(B ◦ C(2))) ◦ X − (A ◦ (C(1) ◦ X))(B ◦ C(2))

−(A ◦ C(1))(B ◦ (C(2) ◦ X))

= (AB ◦ C) ◦ X − AB ◦ (C ◦ X).
Finally, (v) also follows from an induction on the length of A. The 0 length case follows from
(i) and (ii). Then, following (2.6.iii),

(AB ◦ C) ◦ D = ((A ◦ C(1)) ◦ D(1))((B ◦ C(2)) ◦ D(2))

= (A ◦ ((C(1) ◦ D(1))D(2)))(B ◦ ((C(2) ◦ D(3))D(4)))

= AB ◦ ((C ◦ D(1))D(2)),

where the last equality follows from (2.6.iii) and :

∆((C ◦ D(1))D(2)) = (∆(C) ◦ ∆(D(1)))∆(D(2))

= (C(1) ◦ D(1))D(3) ⊗ (C(2) ◦ D(2))D(4)

= (C(1) ◦ D(1))D(2) ⊗ (C(2) ◦ D(3))D(4)

Definition 2.9.

We define the following ∗ product on S(L) :

A ∗ B := (A ◦ B(1))B(2).

Lemma 2.10.

The product ∗ is associative and makes S(L) into a Hopf algebra with coproduct ∆.

Proof. The compatibility between ∗ and ∆ follows from (2.7.iii). Let us prove the associativity
of ∗ :

(A ∗ B) ∗ C = (((A ◦ B(1))B(2)) ◦ C(1))C(2) by definition of ∗,

= ((A ◦ B(1)) ◦ C(1))(B(2) ◦ C(2))C(3) from (2.6.iii),

= (A ◦ ((B(1)) ◦ C(1))C(2)))(B(2) ◦ C(3))C(4) from (2.7.v),

= (A ◦ ((B(1)) ◦ C(1))C(3)))(B(2) ◦ C(2))C(4) by cocommutivity of ∆,

= A ∗ ((B ◦ C(1))C(2)) by definition of ∗ and (2.7.iii),

= A ∗ (B ∗ C)

Lemma 2.11.

The product ∗ agrees with the usual increasing filtration of S(L) by the length of the words,
and the associated graded product is the usual product of the symmetric algebra.
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Proof. The first part follows from the fact that the length of A ◦B is the same as the length
of A. For the second part, we check that, for any monomials A and B, the highest length
term of A ∗ B is AB.

Theorem 2.12.

The Hopf algebra (S(L), ∗,∆) is isomorphic to the enveloping algebra U(LLie).

Proof. For any X and Y in L, we have :
X ∗ Y − Y ∗ X = XY + X ◦ Y − Y X − Y ◦ X

= [X,Y ]
Therefore, the morphism from T (L) to S(L) induced by the inclusion of L factors out through
the ideal < X ⊗ Y − Y ⊗ X − [X,Y ] > :

(T (L),⊗,∆) //

π
((QQQQQQQQQQQQ

(S(L), ∗,∆)

(U(LLie), ·,∆)

ϕ

66mmmmmmmmmmmm

By (2.10.) all the morphisms involved are filtered by the length of the words. Moreover, as
T (L) and U(LLie) are generated by L, they are Hopf algebra’s morphisms. By taking the
corresponding graded maps, we obtain the following diagramm of Hopf algebras :

T (L) //

π
%%KKKKKKKKK

K
S(L)

grU(LLie)

ϕ

99ssssssssss

The horizontal map is nothing but the usual projection of T (L) on S(L). Moreover, π factors
out through S(L), which gives :

S(L)
id

//

π
%%KKKK

KKKK
KK

S(L)

grU(LLie)

ϕ

99ssssssssss

As all the maps involved are onto, ϕ is an isomorphism. Therefore, ϕ is an isomorphism.

Remark 2.13. Everything we have done has naturally a graded version. In fact, all can be
recovered in any abelian symmetric monöidal category. This is a bit heavy to write, because
we have to express all the above calculus in terms of maps and tensor product of maps, but
there is no other obstruction.
So, we have worked above in the symmetric monöidal category of k-modules. For the graded
case, it suffices to replace it by the category of graded k-modules with the signed flip :
x ⊗ y 7→ (−1)|x||y|y ⊗ x.

Remark 2.14. All the construction works if we replace the symmetric algebra S(L) by the
tensor algebra T (L), equipped with the shuffle coproduct.

3 The case of rooted trees and Connes-Kreimer Hopf algebra.

In this section, we study the case of the pre-Lie algebra of colored rooted trees described in
(1.3.). First, we will describe in terms of trees the ◦ product of S(PL(X)) defined in section 2.
Next, we will give another proof of the result F. Chapoton and M. Livernet [3], which states
the freeness of PL(X). Then, we will show that the opposite of our product ∗ is exactly the
dual of the coproduct of Connes and Kreimer. For all this section, we fix a set X of color.
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3.1 The ◦ product for the colored rooted trees.

Let X1, . . . , Xk be trees and consider the monomial A = X1 · · ·Xk. Then A is no longer a
tree, but we can look at it as the disjoint union of the trees Ti, and we often say that it is a
forest.

Now, let A be a forest, and let T1, . . . , Tn be trees. Then A ◦ T1 · · ·Tn is the sum of all the
forest resulting from graftings of the trees Ti on the vertices of A :

A ◦ T1 · · ·Tn =
∑

(v1,··· ,vn)∈|A|n

(· · · ((A ◦v1 T1) ◦v2 T2) · · · ) ◦vn
Tn

For instance, we will need the fact that :

• ◦ T1 · · ·Tn =

T1
· · · Tn

Obviously, all this makes sense when the trees are colored by a set X.

Proposition 3.1. [3]

The pre-Lie algebra PL(X) defined in (1.3.) is the free pre-Lie algebra generated by X.

Proof. Let L be a pre-Lie algebra, and f a map from X to L. Suppose that ϕ is morphism of
pre-Lie algebras from PL(X) to L, which extends f . As all our constructions of section 2 are
functorial, S(ϕ) is a morphism of Hopf algebras from S(PL(X)) to S(L), which commutes
with the ◦ product defined in (2.6.). Then, for any X-colored trees T1, . . . , Tn and any x ∈ X,
we have :

ϕ
( )

= f(x) ◦ ϕ(T1) · · ·ϕ(Tn)
x

T1
· · · Tn

This leads us to a definition of ϕ by necessary condition and by induction on the number of
vertices. It remains to check that it is a morphism of pre-Lie algebras, which is again done
by induction on the number of vertices of the first argument, and follows from the identity
(2.7-v) :

ϕ
(

◦Tn+1

)

= ϕ
(
(x ◦ T1 · · ·Tn) ◦ Tn+1

)

= ϕ
(
(x ◦ Tn+1) ◦ T1 · · ·Tn

)
+

n∑

i=1

ϕ
(
x ◦ T1 · · · (Ti ◦ Tn+1) · · · Tn

)
, by (2.7-v),

= ϕ(x ◦ Tn+1) ◦ ϕ(T1) · · ·ϕ(Tn) +
n∑

i=1

ϕ(x) ◦ ϕ(T1) · · ·ϕ(Ti ◦ Tn+1) · · ·ϕ(Tn), by definition of ϕ,

=
(
ϕ(x) ◦ ϕ(Tn+1)

)
◦ ϕ(T1) · · ·ϕ(Tn) +

n∑

i=1

ϕ(x) ◦ ϕ(T1) · · ·
(
ϕ(Ti) ◦ ϕ(Tn+1)

)
· · ·ϕ(Tn), by induction,

x

T1
· · · Tn

=
(
ϕ(x) ◦ ϕ(T1) · · ·ϕ(Tn)

)
◦ ϕ(Tn+1), by (2.7-v),

= ϕ
(

◦Tn+1

)

, by definition of ϕ.
x

T1
· · · Tn
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Proposition 3.2.

Let PL be the pre-Lie algebra of rooted trees. The ∗ product we have defined on S(PL) is the
exact dual of the opposite of the Connes-Kreimer coproduct.

Proof. The coproduct of Connes and Keimer is defined inductively by using the following
formula :

∆B+ = B+ ⊗ η + (1 ⊗B+)∆

Here, η stands for the unit of S(PL) and B+ is the map which consists in adding a root to a
forest :

B+(T1 · · ·Tn) =

T1
· · · Tn

Therefore, in order to prove our claim, it suffices to show that our product satisfies the
following identity :

B−(A ∗ B) = ε(A)B−(B) + B−(A) ∗ B

where B− is the transpose of B+. For this, let us first notice that B−(A) is null for any
homogenous element A of S(PL) whose length is different from 1. Moreover :

B−

( )

= T1 · · ·Tn

T1
· · · Tn

Now, as for any homogenous elements A and B of S(PL), A ◦ B has the same length as A,
B−(A ∗B) is null whenever the length of A is greater than 2. The above identity is therefore
checked in this case, and it remains to get it when A is a constant or a tree. For the constant
case, we get the obvious equality B−(B) = B−(B). The following leads us to the conclusion
of our proof :

B−

(
(• ◦ T1 · · ·Tn) ∗ B

)
= B−

(
(• ◦ T1 · · · Tn) ◦ B(1)B(2)

)
,

= B−

(
(• ◦ T1 · · · Tn) ◦ B

)
,

= B−

(
• ◦(T1 · · · Tn ∗ B)

)
by (2.7.v),

= T1 · · · Tn ∗ B

4 The link with symmetric brace algebras.

Symmetric brace algebras were introduced by T. Lada and M. Markl in [14]. In this part, we
will show, as an application of section 2, that symmetric brace algebras and pre-Lie algebras
are the same. First, let us recall the definition of symmetric brace algebras and some basic
facts.

Definition 4.1. [14]

A symmetric brace algebra is a vector space V equipped with a brace :

V ⊗ S(V ) −→ V

X ⊗ A 7−→ X{A}

satisfying the following identity :

X{1} = X,

X{Y1, · · · , Yn}{A} = X{Y1{A(1)}, · · · , Yn{A(n)}, A(n+1)}.

10



Proposition 4.2. [14]

Let V be a symmetric brace algebra and define :

X ◦ Y = X{Y }.

Then (V, ◦) is a pre-Lie algebra.

Proposition 4.3.

Let V be a symmetric brace algebra. Then, the following identity holds :

X{A} = X ◦ A.

where ◦ was defined in (2.4.) and (2.6.).

Proof. This is done by induction on the length of A. From the identity of (4.1.), we get

(X ◦ A) ◦ Y = X ◦ (A ◦ X) + X{AY }

and we conclude with (2.6.ii)

Proposition 4.4.

Let (L, ◦) be a pre-Lie algebra. The following braces on L :

X{Y1 · · ·Yn} = X ◦ Y1 · · · Yn

define a symmetric brace algebra structure on L.

Proof. This is a straightforward consequence of (2.7.v) and (2.6.iii).

Corollary 4.5.

The categories of symmetric brace algebras and pre-Lie algebras are isomorphic.

5 Link with brace algebras and B∞-algebras.

In this section, we will extend the construction of part 2 in the brace algebra setting. This will
lead us to an already known fact that was used by Tamarkin in his proof of the Kontsevich
formality theorem [21] [11] : any brace algebra structure on a vector space extends to a B∞-
algebra one. Then, we will recover the Hopf algebra of planar rooted trees introduced by
Foissy [7]

Let us first recall the definition of brace algebra [9]. For this, we will use the usual structure
of non cocommutative coalgebra on T (V ).

Definition 5.1.

Let V be a vector space. A brace algebra structure on V is given by a map :

V ⊗ T (V ) −→ V

X ⊗ A 7−→ X{A}

satisfying the following relations :

X{1} = X,

X{Y1 · · ·Yn}{A} = X{A(1) Y1{A(2)}A(3) · · · A(2n−1) Yn{A(2n)}A(2n+1)},

where the Sweedler notations are here used for the deconcatenation coproduct of T (V ) :

∆(X1 · · ·Xn) =
n∑

i=0

X1 · · ·Xi ⊗ Xi+1 · · ·Xn.
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Now, let us define an associative product, similar to the one of (2.8.), on the tensor cogebra
T (V ) of any brace algebra V :

Proposition 5.2.

Let V be a brace algebra. We define by induction the following ∗ product on T (V ) :

1 ∗ B = B

XA ∗ B = B(1) X{B(2)} (A ∗ B(3))

for A and B in T (V ) and X in V . This product is associative and makes T (V ) into a Hopf
algebra.

Proof. First, let us recall a formula relating the deconcatenation coproduct and the concate-
nation product of T (V ) :

∆(AXB) = A(1) ⊗ A(2)XB + AXB(1) ⊗ B(2)

where A and B are in T (V ), and X is in V . Now, we can prove the compatibility of the ∗
product with ∆ by induction :

∆(XA ∗ B) = B(1) ⊗ B(2) X{B(3)} (A ∗ B(4)) + B(1) X{B(2)} (A(1) ∗ B(3)) ⊗ A(2) ∗ B(4)

= B(1) ⊗ (XA ∗ B(2)) + (XA(1) ∗ B(1)) ⊗ (A(2) ∗ B(2))

= (1 ⊗ XA + XA(1) ⊗ A(2)) ∗ B(1) ⊗ B(2).

Now, let us state a formula relating the ∗ and the concatenation products :

AY B ∗ C = (A ∗ C(1))Y {C(2)} (B ∗ C(3)).

This is done by induction on the length of the monomial A :

XAY B ∗ C = (A ∗ C(1))X{C(2)} (AY B ∗ C(3))

= C(1) X{C(2)} (A ∗ C(3))Y {C(4)} (A ∗ C(5))

= (XA ∗ C(1))Y {C(2)} (A ∗ C(3)).

Next, we give an interpretation of the brace identity of (5.1.) in terms of ∗ product :

X{A}{B} = X{A ∗ B}.

Finally, we prove the associativity of ∗ by induction on the length of A :

(XA ∗ B) ∗ C = (B(1) X{B(2)} (A ∗ B(3))) ∗ C

= (B(1) ∗ C(1))X{B(2)}{C(2)} ((A ∗ B(3)) ∗ C(3))

= (B(1) ∗ C(1))X{B(2) ∗ C(2)} (A ∗ (B(3) ∗ C(3)))

= XA ∗ (B ∗ C).

Remark 5.3. The above ∗ product satisfies the following formula :

X1 · · ·Xn ∗ B = B(1) X1{B(2)}B(3) · · · B(2n−1) Xn{B(2n)}B(2n+1)

Therefore, the brace identity can take the following form :

X{B}{C} = X{B ∗ C}

Remark 5.4. Up to a shift, we have shown that any brace algebra is naturally a B∞-algebra.
Let us recall that a B∞-algebra structure on V is given by a structure of Hopf algebra on
T (V ), where T (V ) is equipped with the deconcatenation coproduct. This fact was well-known
and used in Tamarkin’s proof of Kontsevich formality theorem [21]. It can be stated by using
the cofree universal property of T (V ) [9][11]. By the same way, we could have used the cofree
universal property of S(V ) to state (2.9.) starting from (2.5.).
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5.1 The link with Connes-Kreimer like Hopf algebras for planar trees.

In [7], Foissy introduced a Connes-Kreimer like Hopf algebra with planar rooted trees. He
considered the linear space freely generated by the rooted planar trees and constructed on its
tensor algebra a copruduct, making this tensor algebra neither commutative, nor cocommu-
tative Hopf algebra. Following [5] and [20], it turns out that the space of planar rooted is a
(free) brace algebra. We propose to see that the Foissy’s coproduct is the exact dual of the ∗
product of (5.2.).

For a vertex x of a rooted tree T , we will denote In(x) the set of its upgoing edges.

In(x)
︷ ︸︸ ︷

x

. . .

Definition 5.1.1.

A rooted planar tree is rooted tree T where, for every vertex x of T , In(x) is equipped with
a total order ≤x.

Obviously, for a given set X, an X-coloured planar rooted tree is a planar rooted tree T

equipped with a color map from |T | to X.

Proposition 5.1.2. [5], [20]
Let BR(X) be the linear space generated by the X-colored planar rooted trees. There is a
unique brace algebra structure on BR(X) such that :

•{T1 · · ·Tn} =

T1
· · · Tn

for any element • of X and any X-colored planar rooted trees T1, . . . , Tn. �

This brace structure on planar rooted trees was exhibited by Chapoton in [5]. An inductive
proof of this proposition can be performed, but we prefer to give a combinatorial description
of this braces at the end of the paper.

Theorem 5.1.3.

The coproduct of the Hopf algebra of X-colored planar rooted trees introduced by Foissy in [7]
is dual to the opposite of the ∗ product defined in (5.2.).

Proof. It is almost the same as the proof of (3.2.). Indeed, Foissy’s coproduct is also defined
inductively by using the formulas :

∆B+
x = B+

x ⊗ η + (1 ⊗ B+
x )∆,

where x lies in X. But now, η stands for the unit of T (BR) and B+
x is the map which consists

in adding an x-colored root to a forest :

B+
x (T1 · · ·Tn) =

x

T1
· · · Tn

13



Therefore, in order to prove our claim, it suffices to show that the ∗ product satisfies the
following identity :

B−
x (A ∗ B) = ε(A)B−

x (B) + B−
x (A) ∗ B

where B−
x is the transpose of B+

x . For this, let us first notice that B−
x (A) is null for any

homogenous element A of T (BR) whose length is different from 1. Moreover, for any x and
• in X :

B−
x

( )

= δx,• T1 · · ·Tn

T1
· · · Tn

It follows from (5.2.) that, for any homogenous elements A and B of T (BR), the length of
any monomial composing A ∗B is greater than the length of A. Therefore, B−

x (A ∗B) is null
whenever A is of length greater than 2. The above identity is therefore checked in this case,
and it remains to get it when A is a constant or a tree. For the constant case, we get the
obvious equality B−

x (B) = B−
x (B). The following leads us to the conclusion of our proof :

B−
x

(
• {T1 · · ·Tn} ∗ B

)
= B−

x

(
B(1) (•{T1 · · ·Tn}{B(2)})B(3)

)
,

= B−
x

(
• {T1 · · · Tn}{B}

)
,

= B−
x

(
• {T1 · · · Tn ∗ B}

)
by (5.3.),

= δx,• T1 · · ·Tn ∗ B.

Remark 5.1.4.

Therefore, we do recover the Hopf algebras of Foissy and the Hopf algebras of Loday-Ronco
and of Frabetti-Brouder, since these last two are isomorphic to Foissy’s ones, as proved by
Foissy in [7].

The end of the paper is now devoted to a combinatorial description of the braces claimed in
(5.1.2.)

5.2 A combinatorial description of the braces of planar rooted trees.

First, let us define a total order on the edges of a planar rooted tree :

Definition 5.2.1.

Let T be a planar rooted tree. A path of T is a sequence of adjacent edges of T , and we will
say it is rooted if it starts from the root.

Let l = e1 · · · ep and l′ = e′1 · · · e
′
q be two rooted path. We will say that l ≤ l′ if l is a subpath

of l′ or if l goes to the left of l′ :






p ≤ q and ek = e′k for all k ≤ p,

or
there is an index i and a vertex x such that ei <x e′i in In(x).

Now, let e and e′ be two edges of T . Each of them belongs to a unique path starting from
the root, which we respectively denote l and l′. We will say that e ≤ e′ whenever l ≤ l′.

It is easy to check that this defines a total order on the edges of T .

1

2

3

4

5

6
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Now, let us define the sectors of a planar rooted tree :

Definition 5.2.2.

Let T be a planar rooted tree, and x be a vertex of T . We define the set S(x) of sectors
around x to be In(x) ∐ {∞x} :

x

1 2 3 ∞x

The total order of In(x) extends naturally to a total order of In(x)∐S(x). We denote S(T )
the disjoint union of all S(x) for all the vertices x of T .

On the above picture, the red dashed lines represent the elements of S(T ), where T is the plain
black underlying tree. As you can see, we can associate another rooted tree T corresponding
to the above dashed red and plain black tree to any planar rooted tree T . More precisely, the
set of vertices of T is |T | ∐ S(T ) and, for every vertex x of T , the set of upgoing edges of x

is In(x) ∐ S(x) equipped with the order of (5.2.2.).

Now, by (5.2.1.), we have a total order on the edges of T . We restrict it in order to get a
total order on S(T ).

1

2

3

4

5

6

7

8

9

10

11

12

13

Definition 5.2.3. Grafting of a planar forest along a sector.

Let T , T1, . . . , Tk be X-colored planar rooted trees and s ∈ S(x) be a sector of T . The
grafting of T1 · · · Tn on T along s is the planar rooted tree denoted T ◦s T1 · · ·Tn defined as
follow :

(i) |T ◦s T1 · · ·Tk| = |T | ∐ |T1| ∐ · · · ∐ |Tk|,

(ii) T and all the Ti are planar subtrees of T ◦s T1 · · ·Tk,

(iii) for all i, an edge ei goes up from x to the root Ti,

(iv) for every e in In(x), e < ei whenever e < s and ei < e whenever s < e.
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When T is the above planar rooted tree and s is its sixth sector, then T ◦s T1 · · · Tk is the
following tree :

1

2

3

4

5

T1
·· Tk

7

8

9

10

11

12

13

Now, let T1, · · · , Tn be colored planar rooted trees and let f be an increasing map from
{1, · · · , n} to S(T ). We denote {s1 < · · · < sm} the image of f . We can use f to graft the Ti

trees on T as follows :

T ◦f T1 · · ·Tn =

(

· · ·
((

T ◦s1 Tf−1(s1)

)
◦s2 Tf−1(s2)

)

· · ·

)

◦sm
Tf−1(sm),

where Tf−1(sk) = Ti · · ·Tj if f−1(sk) = {i < · · · < j}.

Definition 5.2.4. The braces of BR(X).
Let T , T1, · · · , Tn be X-colored planar rooted trees. We define :

T{T1 · · ·Tn} =
∑

(f)

T ◦f T1 · · ·Tn

where the sum is taken over all increasing maps f from {1, · · · , n} to S(T ).
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[5] F. Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les digèbres dendri-
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