About Knop's action of the Weyl group on the setof the set of orbits of a spherical subgroup in the flag manifold - Archive ouverte HAL
Article Dans Une Revue Transformation Groups Année : 2005

About Knop's action of the Weyl group on the setof the set of orbits of a spherical subgroup in the flag manifold

Résumé

Let $G$ be a complex connected reductive algebraic group.Let $G/B$ denote the flag variety of $G$. Let $H$ be an algebraic subgroup of $G$ such that the set ${\bf H}(G/B)$ of the $H$-orbits in $G/B$ is finite ; $H$ is said to be {\it spherical}.These orbits are of importance in representationtheory and in the geometry of the $G$-equivariant embeddings of $G/H$.In 1995, F. Knop has defined an action of the Weyl group $W$ of $G$ on ${\bf H}(G/B)$. The aim of this note is to construct natural invariants separating the $W$-orbits of Knop's action.
Fichier principal
Vignette du fichier
actionKnop.pdf (171.21 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00001181 , version 1 (24-02-2004)

Identifiants

Citer

Nicolas Ressayre. About Knop's action of the Weyl group on the setof the set of orbits of a spherical subgroup in the flag manifold. Transformation Groups, 2005, 10 (2), pp.255-265. ⟨10.1007/s00031-005-1009-5⟩. ⟨hal-00001181⟩
86 Consultations
205 Téléchargements

Altmetric

Partager

More