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About Knop’s action of the Weyl group

on the set of orbits of a spherical subgroup
in the flag manifold

N. Ressayre

1 Introduction

Let G be a complex connected reductive algebraic group. Let B denote the flag variety of
G. Let H be an algebraic subgroup of G which has a finite number of orbits in B ; H is said
to be spherical. We denote by H(B) the set of the H-orbits in B. The closures of these orbits
are of importance in representation theory (see [Wol93]). Moreover, the elements of H(B),
viewed as orbits of a Borel subgroup of G in G/H play an important role in the geometry
and topology of the G-equivariant embeddings X of G/H .

In [Kno95], F. Knop introduced an action of a monoid (constructed from the Weyl group
of G) on H(B). This action is called “weak order” and studied by M. Brion in [Bri01]. But,
the most spectacular combinatoric structure of the set H(B) was discovered by F. Knop in
[Kno95]: he defined an action of the Weyl group W of G on H(B). Actually, the results
of F. Knop are stated in a more general context. The proof of the existence of this action
is very indirect and sophisticated. The aim of this note is to construct natural invariants
separating the W -orbits. Note that our methods are elementary.

Let us fix a maximal torus TH of H . Denote by WH the Weyl group of TH . Let T be a
maximal torus of G containing TH and let W denote the Weyl group of T .

Let V ∈ H(B). Let x be a point of V whose the orbit by TH is of minimal dimension.
Denote by S the identity component of the stabilizer of x in TH . The group WH acts
naturally on the set of subtori of TH . The WH-orbit of S is called the type of V . It is shown
in Section 3 that the type of V only depends on V and not on x.

The main result of this note is the following

Theorem Two elements of H(B) are in the same W -orbit for Knop’s action if and only
if they have the same type.

In Section 2, we recall some useful definitions about a graph with vertices the elements of
H(B), Knop’s action of W on H(B) and some classical invariants associated to the elements
of H(B). In Section 3, we show that the definition of the type of an orbit of H is consistent.
After, we study the fixed points of subtori of H in the elements of H(B). In Section 5, we
state and prove our main results. In the following one, we give some consequences of our
results and our proofs.
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2 Definitions and notation

2.1 — Let us fix some general notation. If Γ denotes a linear algebraic group, we denote
by Γ◦ its identity component. If Γ acts on an algebraic variety X and x belongs to X, we
denote by Γx the stabilizer of x and by Γ.x the orbit of x. The set of points of X fixed by
Γ is denoted by XΓ. If S is a subgroup of Γ, we denote by NΓ(S) the normalizer of S in Γ
and by ΓS the centralizer of S in Γ.

2.2 — Let us recall that G is a connected complex reductive group, B its flag variety and
H a closed subgroup of G. We assume that H is spherical; that is, H has a dense orbit in
B. In this article, we are interested in the set H(B) of the orbits of H in B. It is shown in
[Bri86], [Vin86] or [Kno95] that H(B) is finite.

We recall the definition of [Res04] of a graph Γ(G/H) whose vertices are the elements of
H(B). The original construction of Γ(G/H) due to M. Brion is very slightly different (see
[Bri01]).

Consider the set ∆ of conjugacy classes of minimal non solvable parabolic subgroups of
G. If α belongs to ∆, we denote by Pα the G-homogeneous space with isotropy α. Then,
there exists a unique G-equivariant map φα : B −→ Pα which is a P1-bundle.

Let V ∈ H(B) and α ∈ ∆. We assume that the restriction of φα to V is finite and we
denote its degree by d(V, α). Then, there exists a unique open H-orbit V ′ in φ−1

α (φα(V )); in
this case, we say that α raises V to V ′. One of the following three cases occurs.

• Type U : H has two orbits in φ−1
α (φα(V )) (V and V ′) and d(V, α) = 1.

• Type T : H has three orbits in φ−1
α (φα(V )) and d(V, α) = 1.

• Type N : H has two orbits in φ−1
α (φα(V )) (V and V ′) and d(V, α) = 2.

Definition. Let Γ(G/H) be the oriented graph with vertices the elements of H(B) and
edges labeled by ∆, where V is joined to V ′ by an edge labeled by α if α raises V to V ′.
This edge is simple (resp. double) if d(V, α) = 1 (resp. 2). Following the above cases, we
say that an edge has type U , T or N .

One can find examples of graphs Γ(G/H) in [Bri01, Pin01, Res04].

2.3 — Let us fix a Borel subgroup B of G, and a maximal torus T of B. Let W denote the
Weyl group of T . We now describe Knop’s action of W on the set H(B) (see also [Kno95]).
Indeed, the action of simple reflexions easily reads off the graph Γ(G/H).

Every α in ∆ has a unique representative Pα which contains B. Moreover, there exists a
unique sα in W such that BsαB is dense in Pα; and this sα is a simple reflexion of W . The
map, ∆ −→W, α 7−→ sα is a bijection from ∆ onto the set of simple reflexions of W .

Consider the group W̃ generated by {sα : α ∈ ∆} with the relations s2
α = 1. There is a

surjective homomorphism W̃ −→W . Let T denote its kernel.
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One defines an action of W̃ on the set H(B) by describing the action of the sα, for any
α ∈ ∆:

• Type U : sα exchanges the two vertices of an edge of type U labeled by α.

• Type T : If α raises V1 and V2 on V , then sαV1 = V2 and sαV = V .

• Type N : sα fixes the two vertices of a double edge labeled by α.

• sα fixes all others vertices of Γ(G/H).

In [Kno95], F. Knop showed that this action of W̃ factors through W ; that is , that T
acts trivially on H(B). The aim of this paper is to describe the orbits of this action by a
natural invariant and to give some consequences.

2.4 — Denote by H the G-homogeneous space G/H . If V belongs to H(B), we set:

VH = {gH/H : g−1B/B ∈ V }.

Then, VH is a B-orbit in H. Moreover, the map V 7−→ VH is a bijection from H(B) onto the
set B(H) of B-orbits in H.

The character group X (VH) of V (or VH) is the set of all characters of B that arise as
weights of eigenvectors of B in the function field C(VH). Then X (VH) is a free abelian group
of finite rank rk(VH) (or rk(V )), the rank of V .

3 The type of an orbit of H

3.1 — In this section, we define the type of a H-orbit in general (not only in B). We
start with two technical lemmas.

Let us fix a maximal torus TH of H . If V is a H-homogeneous space, we set:

ρV = min
x∈V

dim(TH .x).

Lemma 3.1 Let V ∈ H(B). Then, for all x ∈ V , the following are equivalent:

(i) dim(TH .x) = ρV ,

(ii) (TH
x)

◦ is a maximal torus of Hx.

Proof: Assume that dim(TH .x) = ρV . Let S ′ ⊇ (TH
x)

◦ be a maximal torus of Hx. Then,
there exists h in H such that h−1S ′h is contained is TH . But, h−1S ′h fixes h−1x. Therefore,
dimTH − dimTH

x = ρV ≤ dim(TH .h−1x) ≤ dimTH − dimS ′; hence dimS ′ ≤ dimTH
x. It

follows that S ′ = (TH
x)

◦.
The converse is obvious since (TH

x)
◦ is always a torus of Hx. �
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Lemma 3.2 Let x and y belong to V such that dim(TH .x) = dim(TH .y) = ρV . Set Sx =
(TH

x)
◦ and Sy = (TH

y)
◦.

Then, we have:

(i) There exists h in H such that y = h.x and Sy = hSxh
−1.

(ii) There exist ŵ ∈ NH(TH) such that ŵ−1Syŵ = Sx and ŵ−1.y ∈ HSx .x.

Proof: Let h1 ∈ H such that y = h1.x. By Lemma 3.1, h−1
1 Syh1 and Sx are maximal

tori of Hx = h−1
1 Hyh1. Therefore, (see [Hum75, 21.3]) there exists h2 in Hx such that

h−1
2 h−1

1 Syh1h2 = Sx. Then, h = h1h2 satisfies Assertion 1.
Notice that HSx = h−1HSyh. Then, TH and h−1THh are maximal tori of HSx; so there

exists g1 in HSx such that g−1
1 h−1THhg1 = TH . But, we have: g−1

1 h−1Syhg1 = Sx. Then,
ŵ = hg1 satisfies Assertion 2. �

Let WH = NH(TH)/TH denote the Weyl group of H . The group WH acts by conjugacy
on the set of subtori of TH . Let V be a H-homogeneous space. Let us fix x in V such that
ρV = dim(TH .x). Then, by Lemma 3.2, the orbit WH .(T

H
x )◦ does not depend on x but only

on V ; we call it the type of V .

3.2 — We have:

Proposition 3.1 Let S belong to the type of V . Then, we have:

(i) V S is a unique orbit of NH(S).

(ii) The irreducible components of V S are orbits of (HS)◦.

Proof: Since V is stable by H , V S is stable by NH(S). Let x and y belong to V S. Let
h ∈ H such that y = h.x. Then, h−1Sh is contained in Hx. So by Lemma 3.1, S and h−1Sh
are maximal tori of Hx and hence there exists h1 in Hx such that h−1

1 h−1Shh1 = S. Then,
y = hh1.x belongs to NH(S).x. Assertion 1 is proved.

By [Hum75, Corollary 16.3], the identity component ofNH(S) is (HS)◦. Then, Assertion 2
follows from Assertion 1. �

4 The type of an orbit of H in B

4.1 — In the previous section, we associated to each H-homogeneous space V a type
and an integer ρV . Now, we apply these constructions to the orbits V of H in B. First,
Proposition 4.1 below shows that the type of V corresponds to the character group of V .
We will deduce that ρV − rk(V ) is independent of V .

Let us fix a maximal torus T of G containing TH . Let B be a Borel subgroup of G
containing T .
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Proposition 4.1 Let V be in H(B) and S be a subtorus of T which belongs to the type of
V . Let w ∈W such that V intersects the irreducible component GS.wB/B of BS.

Then, X (V ) ⊗ Q is equal to X (T )w−1Sw ⊗ Q.

Proof: Let g ∈ G such that gB/B belongs to V ∩ GS.wB/B. Consider y = g−1H/H . By
replacing g by an element of gB, we may assume that dim(T.y) = miny′∈B.y dim(T.y′). But,
by Lemma 3.1 T ◦

y is a maximal torus of By. Since the unipotent radical of B◦
y is contained

in U , it is equal to Uy. Then, we have: G◦
y = T ◦

yUy.

We have: X (V )⊗Q = X (B)B◦
y ⊗Q. Moreover, the restriction map from X (B◦

y) to X (T ◦
y )

is injective. Therefore, X (V ) ⊗ Q = X (T )T ◦
y ⊗ Q.

Since By = g−1Hxg, g
−1Sg is a maximal torus of By. Therefore, there exists b ∈ B◦

y

such that S = gbT ◦
y b

−1g−1. By replacing g by gb (and keeping x and y unchanged), we may
assume that b is trivial; that is, that S = gT ◦

y g
−1.

It follows that T and gTg−1 are maximal tori of GS. Then, there exists s ∈ GS such that
sg normalizes T . Let w1 be the class of sg in the Weyl group of T . Then, T ◦

y = w−1
1 Sw1.

On the other hand, since sg ∈ GSwB, there exists w′ in the Weyl group of GS such that
w1 = w′.w. Then, T ◦

y = w−1Sw and the proposition follows. �

Corollary 4.1 Let V be an orbit of H in B. We have:

(i) ρV − rk(V ) = rk(G) − rk(H).

(ii) The rank of V is minimal in H(B) if and only if V contains points fixed by TH .

Proof: The proposition shows that the rank of V is the dimension of T minus the dimension
of S. On the other hand, ρV is the difference between the rank of H and the dimension of
S. Assertion 1 follows.

Since TH has fixed points in B, the rank of V is minimal if and only if ρV = 0; that is, if
and only if V contains points fixed by TH . �

4.2 — Let V be in H(B) and S belong to the type of V . We are now interested in the
set V S. We can make Proposition 3.1 more precise:

Proposition 4.2 (i) The intersection of V S and an irreducible component of BS is a
unique orbit of HS.

(ii) If H is connected, the intersection of V and one irreducible component of BS is irre-
ducible.

Proof: Let x and y be two points of V S in the same irreducible component of BS . Since the
irreducible components of BS are orbits of GS, there exists g ∈ GS such that y = g.x. By
Assertion (i) there exists h ∈ NH(S) such that y = h.x. Then, g−1h belongs to Gx which
is a Borel subgroup of G which contains S. Moreover, g−1h normalizes S. But, by [Hum75,
Proposition 19.4], we have: NGx

(S) = GS
x . So, g−1h and h centralize S. Assertion (iii)

follows.
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If H is connected, Theorem 22.3 of [Hum75] shows that HS is connected. Now, Assertion
(iv) follows from Assertion (iii). �

4.3 — We are now interested in the set of irreducible components of BS which intersect
V . By Proposition 4.2, if H is connected, this set is in bijection with the set of the irreducible
components of V S.

Since the irreducible components of BS are the GSwB/B for w in W , we set:

C(V, S) = {w ∈W : V ∩GSwB/B 6= ∅}.

To describe C(V, S), we need two technical lemmas.

Lemma 4.1 Set NH(S)GS = {hg : h ∈ NH(S) and g ∈ GS}.
Then, NH(S)GS is a closed subgroup of NG(S) whose identity component is GS. More-

over, the group (NH(S)GS)/GS is isomorphic to NH(S)/HS (the Weyl group of S in H,
denoted by W (H,S)).

Proof: Notice that, NH(S) normalizes GS. Now, one easily checks that NH(S)GS is a
subgroup of G. Moreover, NH(S)GS is clearly contained in NG(S) and contains GS. But by
[Hum75, Corollary 16.3], GS is the identity component of NG(S). It follows that the index
of GS in NH(S)GS is finite. Then, NH(S)GS is closed in NG(S) and its identity component
is GS. The last assertion is obvious. �

Notice that T is contained in NH(S)GS. Set WNH(S)GS = NNH(S)GS(T )/T . Then, the
inclusion of NNH(S)GS(T ) in NG(T ) induces an embedding of WNH(S)GS in W . Let WGS

denote the Weyl group of (GS, T ).

Lemma 4.2 We have an exact sequence:

1 −→WGS −→ WNH(S)GS −→ W (H,S) −→ 1.

Proof: Let us start with the exact sequence given by Lemma 4.1:

1 −→ GS −→ NH(S)GS −→W (H,S) −→ 1.

By intersecting with NNH(S)GS(T ), we obtain an exact sequence:

1 −→ NGS(T ) −→ NNH(S)GS(T ) −→ W (H,S),

and it is sufficient to prove that the last map is surjective. Let h in NH(S) and g in
GS. Since, ghT (gh)−1 and T are maximal tori of GS, there exists g′ ∈ GS such that
g′ghT (gh)−1g′−1 = T . The lemma follows. �

If E is a finite set, let |E| denote its cardinality. Now, we can describe C(V, S):

Proposition 4.3 (i) The set C(V, S) is an orbit of WNH(S)GS for its action on W by left
multiplication.
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(ii) If H is connected, V S has |WNH(S)GS | irreducible components.

Proof: Let σ be an element of C(V, S) and let x belong to V ∩ GSσB/B. By Proposition
3.1, V S = NH(S).x. Therefore GS.V S = GSNH(S).x = (NH(S)GS)σB/B. But GSV S is the
union of the GS.wB/B for w ∈ C(V, S). The first assertion follows.

By Proposition 4.2, each irreducible component of V S is the intersection of V and one
irreducible component of BS =

∐
w∈W

GS
\W GSwB/B. Therefore, by the first assertion V S

has
|W

NH(S)GS |

|W
GS |

irreducible components. Now, the second assertion follows from Lemma 4.2.

�

4.4 — Each irreducible component of BS is isomorphic to the flag variety BGS of GS.
Moreover, by Proposition 4.2, V intersects any such irreducible component in one orbit of
HS. We will now describe the orbits of HS in BG which appear in that way.

Let τ be a WH-orbit of subtori of TH . Let H(B)τ denote the set of H-orbits in B of type
τ .

Proposition 4.4 Assume that H(B)τ is not empty. Let us fix an element S in τ . Then,

(i) The subgroup HS of GS is spherical.

(ii) The rank of GS/HS is equal to the rank of the free abelian group X (T )S.

(iii) Let V ∈ H(B)τ and x ∈ V S. Then, ρHS .x = rk(H) − rk(S). In particular, rk(HS.x) =
rk(GS/HS).

(iv) Conversely, let y in BS such that ρHS .y = rk(H) − rk(S). Then, the type of H.y is τ .

Proof: We first prove Assertions 3 and 4. Let V ∈ H(B)τ and x ∈ V S.

Let y ∈ HS.x. Since y belongs to V and the type of V is τ , we have dim(TH
y) ≤ dimS.

Then, ρHS .y ≤ rk(H) − rk(S).
But ρHS .x ≥ ρH.x = rk(H) − rk(S). So ρHS .x = rk(H) − rk(S). This proves Assertion 3.
Set Ω = {y ∈ GS.x : ρHS .y ≤ rk(H) − rk(S)}. The set Ω is open in GS.x and contains

x.
Let y ∈ Ω. Then, S is a maximal torus of HS

y . Let Sy be a maximal torus of Hy

containing S. Then, Sy is contained in HS. Therefore S = Sy. Then, Lemma 3.1 shows
that ρH.y = rk(H) − rk(S). Therefore, since (H.y)S is not empty, the type of H.y is τ . By
Corollary 4.1, this proves Assertion 4.

By Proposition 4.2, each orbit of type τ intersects GS.x in a unique orbit of HS. Hence,
Assertion 3 shows that the set of HS-orbit in Ω is finite. So, HS has a dense orbit in Ω and
in GS.x. The first assertion follows. The second one is now a consequence of Assertion 3. �
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5 Knop’s action of W on H(B) and orbit type

5.1 — Keep the notation as above. In particular, τ is a WH-conjugacy class of subtori
of TH such that H(B)τ is not empty and S belongs to τ . Set W

NH(S)GS
\W = {WNH(S)GSw :

w ∈W}. By Proposition 4.3, we can define a map

Θ :H(B)τ −→ W
NH (S)GS

\W

V 7−→ C(V, S).

We consider on W
NH (S)GS

\W the action of the Weyl group W by right multiplication.

In this section we show the following

Theorem 1 The subset H(B)τ of H(B) is stable by Knop’s action of W . Moreover, the
map Θ is W -equivariant.

5.2 — Start with

Lemma 5.1 Let V ∈ H(B)τ , x ∈ V S and α ∈ ∆. Consider φα : B −→ Pα. Let w ∈ W be
such that GS.x = GS.wB/B. Then one of the two following cases occurs:

Case 1: φ−1
α (φα(x)) is pointwise fixed by S.

Then, we have GSwsαB/B = GSwB/B.
Case 2: There exists y 6= x such that φ−1

α (φα(x))S = {x, y}.
Then, GS.x 6= GS.y and GS.y = GSwsαB/B.

Proof: Set F = φ−1
α (φα(x)). The variety F is isomorphic to the projective line P1. Moreover,

F is stable by the action of the torus S. Then, the image of S in Aut(F ) ≃ PSL(2) is either
trivial or a maximal torus of Aut(F ). In particular, one of the following cases occurs.

Case 1: F S = F .
Case 2: There exists y 6= x such that F S = {x, y}.

In either case, consider the GS-orbit GS.φα(x) and the flag variety BGS of the group GS.
Since GS.φα(x) is the image by φα of GS.x ≃ BGS , it is a complete GS-homogeneous space.
Moreover, since φα is a P1-fibration, we have: dim(BGS) ≥ dim(GS.φα(x)) ≥ dim(BGS) − 1.
Then, two cases occur.

Case a: GS
φα(x) is a non solvable minimal parabolic subgroup of GS

and GS.x contains F .
Case b: GS

φα(x) is a Borel subgroup of GS and F ∩GS.x = {x}.

In Case 1, F is contained in the irreducible component of BS which contains x; that is
in GS.x. So, Case 1 implies Case a. In Case 2, we cannot have that F contains GS.x. So,
Case 2 implies Case b. In particular, GS.x 6= GS.y.

It remains to determine GS.wsαB/B in each case. The fiber φ−1
α (φα(B/B)) of φα is

the closure BsαB/B of BsαB/B in B. Let g ∈ GS be such that x = gwB/B. Then,
F = gwBsαB/B.
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In Case 1, F is contained in GSwB/B. In particular, gwsα belongs to GSwB/B. There-
fore, GSwsαB/B = GSwB/B.

In Case 2, we can notice that gwsαB/B is fixed by S and belongs to F ; Therefore,
y = gwsαB/B. Then, GS.y = GSwsαB/B. �

5.3 — Proof of Theorem 1. Let V ∈ H(B)τ and α ∈ ∆. We will prove that C(V, S)sα =
C(sαV, S). Let w ∈ C(V, S). By Proposition 4.3, it is sufficient to show that wsα belongs to
C(sαV, S).

We fix x in V S ∩ GSwB/B and we set F = φ−1
α (φα(x)). Then, one of the following 4

cases occurs.

Case 1: α raises V on sαV (type U).
Since V ∩ F = {x}, (sαV )S is not empty. Since V and sαV have the same rank, Corol-

lary 4.1 implies that S belongs to the type of sαV .
Let us assume that there exists y 6= x such that F S = {x, y}. Necessarily, y belongs to

sαV . But Lemma 5.1 shows that GS.y = GSwsαB/B. So, wsα belongs to C(sαV, S).
If F S = F then Lemma 5.1 shows that F is contained in GSwB/B = GSwsαB/B. Then,

since F intersects sαV , wsα belongs to C(sαV, S).

Case 2: α raises V and sαV on a third H-orbit V1 (type T ).
Since rk(V1) = rk(V ) + 1, Corollary 4.1 shows that V S

1 is empty. Then, by Lemma 5.1
there exists y 6= x such that F S = {x, y}. On the other hand, F ∩ V1 is equal to F with two
points removed (type T ). Since, V S

1 is empty it follows that F ∩V1 = F−{x, y}, F ∩V = {x}
and F∩sαV = {y}. But, Lemma 5.1 shows thatGS.y = GSwsαB/B. Therefore, wsα belongs
to C(sαV, S).

Case 3: α raises V and sαV = V (type N).
The same proof as in Case 2 shows that F S = {x, y} = F ∩ V and GS.y = GSwsαB/B.

It follows that wsα belongs to C(V, S) = C(sαV, S).

Case 4: F ∩ V is open in F .
If F S = F then V is the only H-orbit in φ−1

α (V ) of maximal rank (type T or N).
Therefore, sαV = V . Moreover, by Lemma 5.1, we have GS.wB/B = GSwsαB/B; therefore,
wsα ∈ C(V, S) = C(sαV, S).

We may assume that there exists y 6= x such that F S = {x, y}. Then, since F ∩ V is
open in F , stable by S and contains x, F ∩ V is either F or F − {y}. If F ∩ V = F − {y}
then α raises sαV to V by an edge of type U . By exchanging V and sαV we come back to
Case 1. Assume that V contains F . Since GSwsαB/B intersects F , it intersects V . Then,
V = sαV and wsα ∈ C(V, S) = C(sαV, S).

This completes the proof of Theorem 1. �

5.4 — Let σ be in W and σ be its class in W
NH (S)GS

\W . We are now interested in the

fiber Θ−1(σ) of Θ. By definition of C(V, S), Θ−1(σ) is the set of the orbits V in H(B)τ which
intersects GSσB/B. Let HS(BGS) denote the set of the HS-orbits in the flag manifold BGS of
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GS, and let HS(BGS)max denote the set of theHS-orbits of maximal rank. By Proposition 4.4,
the map

ησ : Θ−1(σ) −→ HS(BGS)max

V 7−→ V ∩GSσB/B

is a bijection.
The subgroup σ−1WNH(S)GSσ stabilizes Θ−1(σ). Moreover, WNH(S)GS contains WGS .

Therefore, the groupWGS acts on Θ−1(σ) through the morphism WGS −→W, w 7−→ σ−1wσ.
On the other hand, WGS acts on HS(BGS)max by Knop’s action. Is the bijection ησ WGS -
equivariant ? The answer is NO in general, but YES for at least one σ.

Proposition 5.1 There exists σ such that ησ is WGS-equivariant.

Proof: Actually, the map Θ depends on the choice of the Borel subgroup B made in Para-
graph 1. To prove the proposition, it is sufficient to prove that for a good choice of B, η1 is
WGS -equivariant. Let us make such a choice.

Let P be a parabolic subgroup of G with Levi subgroup GS. Let B be a Borel subgroup
of G such that T ⊂ B ⊂ P .

Notice that BS = B ∩GS is a Borel subgroup of GS. Denote by ∆S the set of conjugacy
classes of minimal non solvable parabolic subgroups of GS. Let α ∈ ∆S and PS

α denote
the GS-homogeneous space with isotropy α. If P S

α is a minimal parabolic subgroup of
GS containing BS corresponding to α, then P S

α .B is a minimal parabolic subgroup of G.
Moreover, P S

α = (P S
α .B)∩GS. Therefore, we obtain an immersion (from now on implicit) of

∆S in ∆. In particular Pα = P S
αB. Consider the following commutative diagram D:

BGS ≃GSB/B ⊂

inclusion
- B

PS
α ≃ PS

αi

?

⊂ - Pαi

φαi

?

The restriction of φα to GSB/B is obviously the unique GS-equivariant map φα,S from
BGS onto Pα,S .

Let x ∈ GSB/B such that HS.x belongs to HS(BGS)max. It remains to prove the following

Claim: GSB/B ∩ (sα.Hx) = sα(HSx).

Since Diagram D is commutative, we have

φ−1
α (φα(x)) = φ−1

α,S(φα,S(x)); (1)

we denote by F this subvarity of B. Moreover, since the rank of HSx is maximal in
HS(BGS), Proposition 4.4 shows
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GSB/B ∩Hx = HSx. (2)

Four cases can occur:
Case 1: α raises HSx in Γ(GS/HS).
Case 2: α raises an orbit HSy of HS(BGS)max on HSx.
Case 3: α raises an orbit of HS(BGS) on HSx by an edge of type T or N .
Case 4: HSx = φ−1

α,S(φα,S(HSx)).

In Case 1, F ∩HSx = {x} and HS
x , and hence Hx, acts transitively on F−{x}. Moreover,

by Equality 2, F ∩Hx = {x}. Therefore, α raises Hx by an edge of type U in Γ(G/H). The
claim follows.

In Case 2, HSy is in Case 1. The claim follows.
In Case 3, F ∩HSx = F ∩Hx is equal to F with two points removed. Therefore, α raises

an orbit of H(B) on Hx by an edge of type T or N , and sα.Hx = Hx.
In Case 4, F is contained inHSx and hence inHx. As a consequence, Hx = φ−1

α (φα(Hx))
and sα.Hx = Hx. This completes the proof of the proposition. �

Here, comes our main result.

Theorem 2 Two elements of H(B) are in the same W -orbit for Knop’s action if and only
if they have the same type.

Proof: By Theorem 1, it is sufficient to prove that one (or any) fiber of Θ is an orbit of
WNH(S)GS . Then, by Proposition 5.1, it is sufficient to prove the theorem for the orbits of
maximal rank. Let V0 be such an orbit. There exist a sequence α1, · · · , αk in ∆ and a se-
quence V0, V1, · · · , Vk of H-orbits such that αi raises Vi−1 on Vi for all i = 1, · · · , k, and Vk is
the open H-orbit in B. Since the rank of V0 is maximal, all the orbits Vi have the same rank
and the edges joining these orbits are of type U . Therefore, we have (sαk

· · · sα1).V0 = Vk.
The theorem is proved. �

6 Some consequences

6.1 — Theorem 2 has a nice corollary about the character groups of the elements of
B(H):

Corollary 6.1 Let V and V ′ in H(B). Then, X (V ) = X (V ′) if and only if X (V ) ⊗ Q =
X (V ′) ⊗ Q.

Proof: Let us fix T ⊂ B. By identifying X (B) with X (T ), we obtain an action of W
on X (B). Assume that X (V ) ⊗ Q = X (V ′) ⊗ Q. By Proposition 4.1, the orbits V and
V ′ have the same type. Then, by Theorem 2, there exists w in W such that V = wV ′.

11



Then, by [Kno95, Theorem 4.3], X (V ) = w.X (V ′). Now, X (V ) ⊗ Q = X (V ′) ⊗ Q implies
X (V ) = X (V ′). �

6.2 — We can also apply Theorem 2 to the description of the isotropy subgroups of the
action of H in B.

Corollary 6.2 Let x and y be in B such that Hx and Hy have the same type. Then,
(Hx/H

◦
x) and (Hy/H

◦
y) are isomorphic.

Proof: Set V = Hx and V ′ = Hy. Let α ∈ Delta. Since W is generated by the simple
reflections, by Theorem 2 it is sufficient to prove the corollary for V ′ = sα.V 6= V . Two
cases occur:

• Type T : V and V ′ are raised on a third orbit V ′′.

• Type U : α raises V on V ′ (up to re-indexing).

In the first case, the restrictions of φα to V and V ′ are isomorphisms onto φα(V ′′). The
corollary follows.

Assume that α raises V on V ′ = sα.V . By replacing y by another point of Hy, we
may assume that φα(x) = φα(y). Since the restriction of φα to V is an isomorphism onto
φα(V ) and φα(V ′) = φα(V ), Hy is contained in Hx. This inclusion induces a morphism
ψ : Hy/H

◦
y −→ Hx/H

◦
x. But, Hx/Hy is isomorphic to A1 and hence irreducible. We deduce

that ψ is surjective.
It remains to show that Hy ∩ H◦

x = H◦
y to prove that ψ is injective. Obviously, H◦

y ⊂
(Hy ∩H

◦
x); and we can define a morphism H◦

x/H
◦
y −→ H◦

x/(Hy ∩H
◦
x). Since H◦

x/(Hy ∩H
◦
x)

is isomorphic to A1, it is simply connected and Hy ∩H
◦
x = H◦

y . �

6.3 — We are going to apply Theorem 2 to the H-orbits in B of minimal rank. We keep
notation as above. In particular, H(B){T H} is the set of the orbits of H in B of minimal
rank.

Proposition 6.1 We assume that H is connected. Then, we have:

(i) The group HT H

/TH is a maximal unipotent subgroup of GT H

/TH .

(ii) The stabilizers in W (for Knop’s action) of the elements of H(B){T H} are isomorphic
to the Weyl group WH of H.

(iii) Let V be in H(B){T H}. The stabilizers in H of the points of V are connected.

Proof: Since TH is maximal in H , HT H

/TH is unipotent. But it is a spherical subgroup of
GT H

/TH. Assertion 1 follows.

We claim that the cardinality of the set H(B){T H} is |W |
|WH |

. By Proposition 4.3, we have

to prove that the set of irreducible components of the V T H

for V ∈ H(B){T H} has the same
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cardinality as W . But, by Proposition 4.4, this set is in natural bijection with the set of
orbits of HT H

in BT H

. Moreover, by Assertion 1, HT H

has |W
GTH | orbits in each one of the

|W |
|W

GTH |
irreducible components of BT H

. The claim follows.

By Proposition 5.1, we may assume that η1 is W
GTH -equivariant to prove Assertion 2.

Let V be in H(B){T H} such that Θ(V ) = 1. We have to prove that the stabilizer WV of V in
W is isomorphic to WH . Since Θ is W -equivariant, WV is contained in W

NH(T H)GTH and by

Lemma 4.2 maps on WH . Moreover, the claim shows that |WV | = |WH |. So, by Lemma 4.2
it is sufficient to prove that WV ∩WGS is trivial. By Proposition 5.1, this is a consequence
of Assertion 1.

By Corollary 6.2, it is sufficient to prove the last assertion for a closed orbit V of H in
B. Let x be in V . Since V is closed in B, it is projective. So, Hx is a parabolic subgroup of
H . In particular, it is connected. �

Acknowledgment: I am grateful to S. Pin for numerous and very useful discussions.
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Case courrier 051-Place Eugène Bataillon
34095 Montpellier Cedex 5
France
e-mail: ressayre@math.univ-montp2.fr

14


