Pseudo-rotations of the closed annulus : variation on a theorem of J. Kwapisz - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2003

Pseudo-rotations of the closed annulus : variation on a theorem of J. Kwapisz

Francois Beguin
  • Fonction : Auteur
  • PersonId : 828555
Frederic Le Roux
  • Fonction : Auteur
  • PersonId : 828556
Alice Patou
  • Fonction : Auteur

Résumé

Consider a homeomorphism h of the closed annulusS^1*[0,1], isotopic to the identity, such that therotation set of h is reduced to a single irrationalnumber alpha (we say that h is an irrationalpseudo-rotation).For every positive integer n, we prove that thereexists a simple arc gamma joining one of theboundary component of the annulus to the otherone, such that gamma is disjoint from its nfirst iterates under h. As a corollary, we obtain thatthe rigid rotation of angle alpha can beapproximated by homeomorphisms conjugate to h.The first result stated above is an analog of atheorem of J.\,Kwapisz dealing with diffeomorphisms of the two-torus; we give some new, purely two-dimensional, proofs,that work both for the annulus and for the toruscase.
Fichier principal
Vignette du fichier
principalLTT.pdf (399.35 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00000654 , version 1 (29-09-2003)

Identifiants

Citer

Sylvain Crovisier, Francois Beguin, Frederic Le Roux, Alice Patou. Pseudo-rotations of the closed annulus : variation on a theorem of J. Kwapisz. 2003. ⟨hal-00000654⟩
223 Consultations
231 Téléchargements

Altmetric

Partager

More