Learning to detect visual relations - Archive ouverte HAL Access content directly
Theses Year : 2019

Learning to detect visual relations

Détection automatique de relations visuelles

Abstract

In this thesis, we study the problem of detection of visual relations of the form (subject, predicate, object) in images, which are intermediate level semantic units between objects and complex scenes. Our work addresses two main challenges in visual relation detection: (1) the difficulty of obtaining box-level annotations to train fully-supervised models, (2) the variability of appearance of visual relations. We first propose a weakly-supervised approach which, given pre-trained object detectors, enables us to learn relation detectors using image-level labels only, maintaining a performance close to fully-supervised models. Second, we propose a model that combines different granularities of embeddings (for subject, object, predicate and triplet) to better model appearance variation and introduce an analogical reasoning module to generalize to unseen triplets. Experimental results demonstrate the improvement of our hybrid model over a purely compositional model and validate the benefits of our transfer by analogy to retrieve unseen triplets.
Nous étudions le problème de détection de relations visuelles de la forme (sujet, prédicat, objet) dans les images, qui sont des entités intermédiaires entre les objets et les scènes visuelles complexes. Cette thèse s’attaque à deux défis majeurs : (1) le problème d’annotations coûteuses pour l’entrainement de modèles fortement supervisés, (2) la variation d’apparence visuelle des relations. Nous proposons un premier modèle de détection de relations visuelles faiblement supervisé, n’utilisant que des annotations au niveau de l’image, qui, étant donné des détecteurs d’objets pré-entrainés, atteint une précision proche de celle de modèles fortement supervisés. Notre second modèle combine des représentations compositionnelles (sujet, objet, prédicat) et holistiques (triplet) afin de mieux modéliser les variations d’apparence visuelle et propose un module de raisonnement par analogie pour généraliser à de nouveaux triplets. Nous validons expérimentalement le bénéfice apporté par chacune de ces composantes sur des bases de données réelles.
Fichier principal
Vignette du fichier
Peyre-2019-These.pdf (35.82 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-02332673 , version 1 (20-11-2019)
tel-02332673 , version 2 (23-03-2020)

Identifiers

  • HAL Id : tel-02332673 , version 2

Cite

Julia Peyre. Learning to detect visual relations. Artificial Intelligence [cs.AI]. Université Paris sciences et lettres, 2019. English. ⟨NNT : 2019PSLEE016⟩. ⟨tel-02332673v2⟩
279 View
31 Download

Share

Gmail Facebook X LinkedIn More