Étude photodynamique de nanoparticules de BODIPY et développements méthodologiques pour l’imagerie de fluorescence super-résolue - Archive ouverte HAL
Thèse Année : 2016

Study of the photodynamic for some BODIPY nanoparticles and methodological developments for super-resolution fluorescence imaging

Étude photodynamique de nanoparticules de BODIPY et développements méthodologiques pour l’imagerie de fluorescence super-résolue

Résumé

The first part of the thesis was the study of bright BODIPY nanoparticles (NPFs) (more than 5000 encapsulated molecules). Non-fluorescent aggregates and excimers (lifetime of 1.8 ns) were characterized by time resolved fluorescence experiments. In addition time-resolved fluorescence anisotropy and femtosecond transient absorption spectroscopy experiments revealed efficient ultrafast energy transfer, intermolecular migration (< 25 ps) and singlet-singlet annihilation (< 2 ps). Single particle spectroscopy on NPFs, function of the number of excited molecules within a NPF, revealed some blinking at the scale of about a hundred of milliseconds. However, due to too high density of emissive molecules, complete extinction of fluorescence (OFF state) could not be observed. The absence of OFF state forbid the use of a single molecule localization methods, the second part of this work was thus focused on the development of a data treatment method for single molecule fluorescence images containing high density of emitters. This method (MAPPIX, MAPping Pixel dissimilarity) uses the intensity fluctuations of the probes fluorescence emission over time and is based on a dissimilarity calculation. The results obtained on simulated data and real images were very conclusive. Although it was not possible to be rationalized it in terms of resolution, a contrast improvement bypassing the diffraction limit was observed.
La première partie du travail de thèse a été l’étude de nanoparticules organiques (NPFs) de BODIPY de forte brillance (plus de 5000 molécules encapsulées). Des expériences par fluorescence résolue en temps ont permis de déterminer la présence d’agrégats non fluorescents et d’excimères (temps de vie de 1,8 ns). D’autre part, des expériences d’anisotropie de fluorescence résolue en temps et de spectroscopie d’absorption transitoire femtoseconde ont révélé l’existence de transferts d’énergie ultrarapides et efficaces, migration intermoléculaire (< 25 ps) et annihilation singulet-singulet (< 2 ps). Enfin, le suivi de l’émission des NPFs par spectroscopie de particules uniques a permis d’observer leur clignotement à l’échelle de la centaine de millisecondes. Cependant, due à une trop forte densité de molécules émissives, aucune extinction totale de fluorescence (état OFF) n’a été observée. L’absence d’état OFF ne permettant pas l’utilisation d’une méthode de localisation de molécules uniques, la deuxième partie du travail a concerné le développement d’une méthode de traitement des données d’imagerie de fluorescence de molécules uniques possédant une forte densité de molécules émissives. Cette méthode (MAPPIX, MAPping Pixel dissimilarity) utilise la fluctuation d’intensité de l’émission de fluorescence des sondes au cours du temps et est basée sur un calcul de dissimilarité. Les résultats obtenus sur des données simulées et des images réelles se sont avérés très concluant. Bien que n’ayant pas pu être rationalisé en termes de gain de résolution, une amélioration de contraste permettant de dépasser la limite de diffraction a été observée.
Fichier principal
Vignette du fichier
Romain_Bernex.pdf (6.51 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01581782 , version 1 (05-09-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : tel-01581782 , version 1

Citer

Romain Bernex. Étude photodynamique de nanoparticules de BODIPY et développements méthodologiques pour l’imagerie de fluorescence super-résolue. Chimie théorique et/ou physique. Université Lille1 - Sciences et Technologies, 2016. Français. ⟨NNT : ⟩. ⟨tel-01581782⟩
79 Consultations
187 Téléchargements

Partager

More