Stabilité des fluides incompressibles - Archive ouverte HAL
Hdr Année : 2017

Stabilité des fluides incompressibles

Résumé

Nous rassemblons dans ce mémoire les résultats obtenus par l'auteur et ses collaborateurs, puis nous donnerons les idées principales de l'analyse mise en place pour leurs démonstrations. Une première série de résultats concerne la convergence des solutions des équations d'Euler bi-dimensionnelles quand nous perturbons la géométrie du domaine. Selon la perturbation, nous obtiendrons de la stabilité ou une limite vérifiant une équation d'Euler modifiée. Le second regroupement de travaux traitera de la question de l'unicité pour ces systèmes limites perturbés. Nous étudierons ensuite la stabilité des solutions des équations de Navier-Stokes. Tout d'abord, nous examinons le cas des petits obstacles, puis nous serons amenés à l'étude du comportement en temps long des solutions des équations de Navier-Stokes. Ces deux dernières questions étant en effet reliées par le changement d'échelle naturel pour les équations des fluides visqueux.
Fichier principal
Vignette du fichier
HDR-Lacave.pdf (762.2 Ko) Télécharger le fichier
Loading...

Dates et versions

tel-01574511 , version 1 (14-08-2017)

Identifiants

  • HAL Id : tel-01574511 , version 1

Citer

Christophe Lacave. Stabilité des fluides incompressibles. Equations aux dérivées partielles [math.AP]. Université Paris 7 - Denis Diderot, 2017. ⟨tel-01574511⟩
215 Consultations
593 Téléchargements

Partager

More