Exact and Inexact Methods for Graph Similarity in Structural Pattern Recognition PhD thesis of Vincenzo Carletti. - Archive ouverte HAL Access content directly
Theses Year : 2016

Exact and Inexact Methods for Graph Similarity in Structural Pattern Recognition PhD thesis of Vincenzo Carletti.

Méthodes exactes et inexactes pour mesurer la similarité de graphes en reconnaissance structurelle de formes.

Abstract

Graphs are widely employed in many application fields, such as biology, chemistry, social networks, databases and so on. Graphs allow to describe a set of objects together with their relationships. Analysing these data often requires to measure the similarity between two graphs. Unfortunately, due to its combinatorial nature, this is a NP-Complete problem generally addressed using different kind of heuristics. In this Thesis we have explored two approaches to compute the similarity between graphs. The former is based on the exact graph matching approach. We have designed, VF3, an algorithm aimed to search for pattern structures within graphs. While, the second approach is an inexact graph matching method which aims to compute an efficient approximation of the Graph Edit Distance (GED) as a Quadratic Assignment Problem (QAP).
Les graphes sont utilis ́es dans de nombreux domaines applicatifs tels que la biologie, les r ́eseaux sociaux, les bases de donn ́ees,... Les graphes permettent de d ́ecrire un ensemble d’objets ainsi que leurs relations. L’analyse de ces objets r ́eclame souvent de mesurer la similarit ́e entre les graphes. Toutefois, en raison de son aspect combinatoire, ce probl`eme est NP complet et est g ́en ́eralement r ́esolu en utilisant diff ́erentes heuristiques. Dans cette th`ese nous avons explor ́e deux approches pour calculer la similarit ́e entre graphes. La premi`ere est bas ́e sur l’appariement exact. Nous avons con ̧cu l’algorithme VF3 qui recherche des motifs dans les graphes. La seconde approche est bas ́ee sur un appariement inexact qui calcule une approximation efficace de la distance d’ ́edition entre graphes en la mod ́elisant comme un probl`eme de minimisation quadratique.
Fichier principal
Vignette du fichier
thesis.pdf (2.77 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-01315389 , version 1 (13-05-2016)

Identifiers

  • HAL Id : tel-01315389 , version 1

Cite

Vincenzo Carletti. Exact and Inexact Methods for Graph Similarity in Structural Pattern Recognition PhD thesis of Vincenzo Carletti.. Computer Vision and Pattern Recognition [cs.CV]. Université de Caen; Universita degli studi di Salerno, 2016. English. ⟨NNT : ⟩. ⟨tel-01315389⟩
426 View
1284 Download

Share

Gmail Facebook X LinkedIn More