On the synthesis of T-S Fuzzy model predictive fault tolerant control
Sur la synthèse de commandes prédictives tolérantes aux défauts à base de modèles T-S flous
Résumé
This thesis mainly focuses on Fuzzy Fault Tolerant Predictive Control for a class of nonlinear systems. The Takagi-Sugeno (T-S) fuzzy approach is introduced as a modelling technique in order to consider the active control methods adapted to linear models. To obtain the convex form, two approches are applied in this work, the proposed global non stationary linearization method and the sector nonlinearity approach. The contributions of this thesis and novelties with respect to other works are based on a combination between Parallel Distributed Compensation control law and Model Predictive Control where the T-S fuzzy aspect uses measured and unmeasured premise variables. The optimization problem is formulated as a quadratic programming problem. A nonlinear observer and A T-S fuzzy observer are designed for the proposed strategies, in order to estimate faults and system state variables. The controller and observer gains are obtained by solving Linear Matrix Inequalities (LMIs) derived from the Lyapunov theory. Convergences are performed by using Lyapunov asymptotic stability and L2 optimization. Actually, the use of the sector nonlinearity approach has reduced the conservatism related to the number of LMIs to solve. On top of that, the chosen form of the candidate function of Lyapunov and the T-S fuzzy structure have significantly decreased the pessimism of sufficient stability conditions derived from Lyapunov theories. The proposed Fuzzy model based predictive control is designed to achieve desired set points and control objectives in the the healthy operating and to accommodate and tolerate unexpected faults. Furthermore, the uncertain case and robustness with respect to constraints are investigated. The effectiveness and the validity of the proposed Fault Tolerant Control (FTC) strategies is illustrated through an application to an academic example and to a Diesel Engine Air Path (DEAP) system.
Cette thèse porte sur la synthèse de lois de commande prédictive floue tolérante aux défauts pour les systèmes non linéaires modélisés selon l'approche dite T-S. Ma contribution est de proposer une FMPC (Fuzzy Model-based Predictive Control) visant à améliorer les performances d'un système non linéaire tout en respectant les contraintes sur la commande. L’optimisation de la commande nécessite la résolution d'un problème de programmation quadratique et une résolution d’inégalités matricielles linéaires (LMIs) dérivées des thèories de Lyapunov. La stratégie proposée a été appliquée en simulation à un système SISO non linéaire puis au système d'air d'un moteur Diesel en présence de défauts de type actionneur, capteur ou système, de perturbations et d'incertitudes de modélisation
Fichier principal
Mémoire final Lamia BEN HAMOUDA co tutelle.pdf (2.84 Mo)
Télécharger le fichier
proces verbal Lamia BEN HAMOUDA co TUTELLE.PDF (820.44 Ko)
Télécharger le fichier