Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos - Archive ouverte HAL Access content directly
Theses Year : 2009

Multi-objective ant colony optimization : case of knapsack problems

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos

Abstract

In this thesis, we investigate the capabilities of Ant Colony Optimization (ACO) metaheuristic to solve combinatorial and multi-objective optimization problems. First, we propose a taxonomy of ACO algorithms proposed in the literature to solve multi-objective problems. Then, we studydifferent pheromonal strategies for the case of mono-objective multidimensional knapsackproblem. We propose, finally, a generic ACO algorithm to solve multi-objective problems. Thisalgorithm is parameterised by the number of ant colonies and the number of pheromonestructures. This algorithm allows us to evaluate and compare new and existing approaches in thesame framework. We compare six variants of this generic algorithm on the multi-objectivemultidimensional knapsack problem
Dans cette thèse, nous nous intéressons à l'étude des capacités de la méta heuristique d'optimisation par colonie de fourmis (Ant Colony Optimization - ACO) pour résoudre des problèmes d’optimisation combinatoire multi-objectif. Dans ce cadre, nous avons proposé une taxonomie des algorithmes ACO proposés dans la littérature pour résoudre des problèmes de ce type. Nous avons mené, par la suite, une étude expérimentale de différentes stratégies phéromonales pour le cas du problème du sac à dos multidimensionnel mono-objectif. Enfin,nous avons proposé un algorithme ACO générique pour résoudre des problèmes d'optimisation multi-objectif. Cet algorithme est paramétré par le nombre de colonies de fourmis et le nombre de structures de phéromone considérées. Il permet de tester et de comparer, dans un même cadre,plusieurs approches. Nous avons proposé six variantes de cet algorithme dont trois présentent de nouvelles approches et trois autres reprennent des approches existantes. Nous avons appliqué et comparé ces variantes au problème du sac à dos multidimensionnel multi-objectif
Fichier principal
Vignette du fichier
TH2009_Alaya_-_Ines.pdf (788.04 Ko) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-00603780 , version 1 (27-06-2011)

Identifiers

  • HAL Id : tel-00603780 , version 1

Cite

Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos. Ordinateur et société [cs.CY]. Université Claude Bernard - Lyon I; Université de la Manouba (Tunisie), 2009. Français. ⟨NNT : 2009LYO10060⟩. ⟨tel-00603780⟩
1833 View
6152 Download

Share

Gmail Facebook X LinkedIn More