Computer vision for pattern detection in chromosome contact maps - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2020

Computer vision for pattern detection in chromosome contact maps

Axel Breuer
  • Fonction : Auteur
Arnaud Campeas
  • Fonction : Auteur
Philippe Henri Chanut
  • Fonction : Auteur
Edgar Oriol
  • Fonction : Auteur
Adrien Méot
  • Fonction : Auteur
Laurent Politis
  • Fonction : Auteur

Résumé

Chromosomes of all species studied so far display a variety of higher-order organisational features, such as self-interacting domains or loops. These structures, which are often associated to biological functions, form distinct, visible patterns on genome-wide contact maps generated by chromosome conformation capture approaches such as Hi-C. Here we present Chromosight, an algorithm inspired from computer vision that can detect patterns in contact maps. Chromosight has greater sensitivity than existing methods on synthetic simulated data, while being faster and applicable to any type of genomes, including bacteria, viruses, yeasts and mammals. Our method does not require any prior training dataset and works well with default parameters on data generated with various protocols.
Fichier principal
Vignette du fichier
s41467-020-19562-7.pdf (6.76 Mo) Télécharger le fichier

Dates et versions

pasteur-03263561 , version 1 (17-06-2021)

Licence

Identifiants

Citer

Cyril Matthey-Doret, Lyam Baudry, Axel Breuer, Rémi Montagne, Nadège Guiglielmoni, et al.. Computer vision for pattern detection in chromosome contact maps. Nature Communications, 2020, 11 (1), pp.5795. ⟨10.1038/s41467-020-19562-7⟩. ⟨pasteur-03263561⟩
94 Consultations
139 Téléchargements

Altmetric

Partager

More