Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions - Archive ouverte HAL
Article Dans Une Revue Journal de Physique I Année : 1995

Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions

Didier Sornette
  • Fonction : Auteur
Charles Sammis
  • Fonction : Auteur

Résumé

Several authors have proposed discrete renormalization group models of earthquakes, viewing them as a kind of dynamical critical phenomena. Here, we propose that the assumed discrete scale invariance stems from the irreversible and intermittent nature of rupture which ensures a breakdown of translational invariance. As a consequence, we show that the renormalization group entails complex critical exponents, describing log-periodic corrections to the leading scaling behavior. We use the mathematical form of this solution to fit the time to failure dependence of the Benioff strain on the approach of large earthquakes. This might provide a new technique for earthquake prediction for which we present preliminary tests on the 1989 Loma Prieta earthquake in northern California and on a recent build-up of seismic activity on a segment of the Aleutian-Island seismic zone. The earthquake phenomenology of precursory phenomena such as the causal sequence of quiescence and foreshocks is captured by the general structure of the mathematical solution of the renormalization group.

Domaines

Articles anciens
Fichier principal
Vignette du fichier
ajp-jp1v5p607.pdf (864.08 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

jpa-00247086 , version 1 (04-02-2008)

Identifiants

Citer

Didier Sornette, Charles Sammis. Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions. Journal de Physique I, 1995, 5 (5), pp.607-619. ⟨10.1051/jp1:1995154⟩. ⟨jpa-00247086⟩

Collections

AJP
114 Consultations
1369 Téléchargements

Altmetric

Partager

More