Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, super-infection and recombination
Résumé
Wolbachia is a group of maternally inherited endosymbiotic bacteria that infect and induce cytoplasmic incompatibility (CI) in a wide range of arthropods. In contrast to other species, the mosquito Culex pipiens displays an extremely high number of CI types suggesting differential infection by multiple Wolbachia strains. Attempts so far failed to detect Wolbachia polymorphism that might explain this high level of CI diversity found in C. pipiens populations. Here, we establish that Wolbachia infection is near to or at fixation in worldwide populations of the C. pipiens complex. Wolbachia polymorphism was addressed by sequence analysis of the Tr1 gene, a unique transposable element of the IS5 family, which allowed the identification of five C. pipiens Wolbachia strains, differing either by nucleotide substitution, presence or absence pattern, or insertion site. Sequence analysis also showed that recombination, transposition and superinfection occurred at very low frequencies. Analysis of the geographical distributions of each Wolbachia strain among C. pipiens populations indicated a strong worldwide differentiation independent from mosquito subspecies type, except in the UK. The availability of this polymorphic marker now opens the way to investigate evolution of Wolbachia populations and CI dynamics, in particular in regions where multiple crossing types coexist among C. pipiens populations.