Data-Driven Prognostics with Multi-Layer Perceptron Particle Filter: a Cross-Industry Exploration
Résumé
The integration of particle or Kalman filters with machine learning tools like support vector machines, Gaussian processes, or neural networks has seen extensive exploration in the context of prognostic and health management, particularly in model-based applications. This paper focuses on the Multi-Layer Perceptron Particle Filter (MLP-PF), a data-driven approach that harnesses the non-linearity of MLP to describe degradation trajectories without relying on a physical model. The Bayesian nature of the particle filter is utilized to update MLP parameters, providing flexibility to the method and accommodating unexpected changes in the degradation behavior. To showcase the versatility of MLP-PF, this work demonstrates its seamless integration into diverse use cases, such as lithium-ion battery analysis, virtual health monitoring for turbofans, and the assessment of fatigue crack growth. We illustrate how it effortlessly accommodates various contexts through slight parameter modifications. Adjustment includes variation in the number of neurons or layers in the MLP, threshold adjustments, initial training refinements and the adaptation of the process noise. Addressing different degradation processes across these applications, MLP-PF proves its adaptability and utility in various contexts. These findings highlight the method’s versatility in adapting to diverse use cases and its potential as a robust prognostic tool across various industries. MLP-PF offers a practical and efficient means of estimating remaining useful life and predicting degradation in complex systems, with implications for advancing prognostic tools in diverse applications.