Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model
Résumé
The quantum loop model (QLM), along with the quantum dimer model (QDM), are archetypal correlated systems with local constraints. With natural foundations in statistical mechanics, these models are of direct relevance to various important physical concepts and systems, such as topological order, lattice gauge theories, geometric frustrations, or more recently Rydberg quantum simulators. However, the effect of finite temperature fluctuations on these quantum constrained models has been barely explored. Here we study, via unbiased quantum Monte Carlo simulations and field theoretical analysis, the finite temperature phase diagram of the QLM on the triangular lattice. We discover that the vison plaquette (VP) crystal experiences a finite temperature continuous transition, which smoothly connects to the (2+1)d Cubic* quantum critical point separating the VP and $\mathbb{Z}_{2}$ quantum spin liquid phases. This finite temperature phase transition acquires a unique property of {\it thermal fractionalization}, in that, both the cubic order parameter -- the plaquette loop resonance -- and its constituent -- the vison field -- exhibit independent criticality signatures. This phase transition is connected to a 3-state Potts transition between the lattice nematic phase and the high-temperature disordered phase.