Quantitative Quantum Zeno and Strong Damping Limits in Strong Topology - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Quantitative Quantum Zeno and Strong Damping Limits in Strong Topology

Résumé

Frequent applications of a mixing quantum operation to a quantum system slow down its time evolution and eventually drive it into the invariant subspace of the named operation. We prove this phenomenon, the quantum Zeno effect, and its continuous variant, strong damping, in a unified way for infinite-dimensional open quantum systems, while merely demanding that the respective mixing convergence holds pointwise for all states. Both results are quantitative in the following sense: Given the speed of convergence for the mixing limits, we can derive bounds on the convergence speed for the corresponding quantum Zeno and strong damping limits. We apply our results to prove quantum Zeno and strong damping limits for the photon loss channel with an explicit bound on the convergence speed.
Fichier principal
Vignette du fichier
2409.06469v1.pdf (809.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04840639 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Robert Salzmann. Quantitative Quantum Zeno and Strong Damping Limits in Strong Topology. 2024. ⟨hal-04840639⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More