On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results - Archive ouverte HAL
Article Dans Une Revue Biogeosciences Année : 2024

On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results

Gab Abramowitz
Anna Ukkola
Sanaa Hobeichi
  • Fonction : Auteur
Jon Cranko Page
Mathew Lipson
  • Fonction : Auteur
Martin G de Kauwe
Samuel Green
Claire Brenner
Jonathan Frame
Grey Nearing
  • Fonction : Auteur
Martyn Clark
  • Fonction : Auteur
Martin Best
  • Fonction : Auteur
Peter Anthoni
Gabriele Arduini
  • Fonction : Auteur
Souhail Boussetta
Silvia Caldararu
Kyeungwoo Cho
Matthias Cuntz
David Fairbairn
Craig R Ferguson
Hyungjun Kim
Yeonjoo Kim
Jürgen Knauer
David Lawrence
Xiangzhong Luo
Sergey Malyshev
Tomoko Nitta
  • Fonction : Auteur
Jerome Ogee
  • Fonction : Auteur
Keith Oleson
  • Fonction : Auteur
Patricia de Rosnay
Heather Rumbold
  • Fonction : Auteur
Bob Su
  • Fonction : Auteur
Anthony P Walker
Xiaoni Wang-Faivre
  • Fonction : Auteur
Yunfei Wang
  • Fonction : Auteur
Yijian Zeng

Résumé

Abstract. Accurate representation of the turbulent exchange of carbon, water, and heat between the land surface and the atmosphere is critical for modelling global energy, water, and carbon cycles in both future climate projections and weather forecasts. Evaluation of models' ability to do this is performed in a wide range of simulation environments, often without explicit consideration of the degree of observational constraint or uncertainty and typically without quantification of benchmark performance expectations. We describe a Model Intercomparison Project (MIP) that attempts to resolve these shortcomings, comparing the surface turbulent heat flux predictions of around 20 different land models provided with in situ meteorological forcing evaluated with measured surface fluxes using quality-controlled data from 170 eddy-covariance-based flux tower sites. Predictions from seven out-of-sample empirical models are used to quantify the information available to land models in their forcing data and so the potential for land model performance improvement. Sites with unusual behaviour, complicated processes, poor data quality, or uncommon flux magnitude are more difficult to predict for both mechanistic and empirical models, providing a means of fairer assessment of land model performance. When examining observational uncertainty, model performance does not appear to improve in low-turbulence periods or with energy-balance-corrected flux tower data, and indeed some results raise questions about whether the energy balance correction process itself is appropriate. In all cases the results are broadly consistent, with simple out-of-sample empirical models, including linear regression, comfortably outperforming mechanistic land models. In all but two cases, latent heat flux and net ecosystem exchange of CO2 are better predicted by land models than sensible heat flux, despite it seeming to have fewer physical controlling processes. Land models that are implemented in Earth system models also appear to perform notably better than stand-alone ecosystem (including demographic) models, at least in terms of the fluxes examined here. The approach we outline enables isolation of the locations and conditions under which model developers can know that a land model can improve, allowing information pathways and discrete parameterisations in models to be identified and targeted for future model development.
Fichier principal
Vignette du fichier
bg-21-5517-2024.pdf (4.04 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04840629 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, et al.. On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results. Biogeosciences, 2024, 21 (23), pp.5517 - 5538. ⟨10.5194/bg-21-5517-2024⟩. ⟨hal-04840629⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More