Performance Benchmarking of YOLOv11 Variants for Real-Time Delivery Vehicle Detection: A Study on Accuracy, Speed, and Computational Trade-offs - Archive ouverte HAL
Article Dans Une Revue Asian Journal of Research in Computer Science Année : 2024

Performance Benchmarking of YOLOv11 Variants for Real-Time Delivery Vehicle Detection: A Study on Accuracy, Speed, and Computational Trade-offs

Résumé

The YOLOv series represents state-of-the-art technology for single-stage object detection, excelling in speed and accuracy. In many scenarios, it outperforms traditional two-stage detection frameworks, making it ideal for real-time applications. This study evaluates YOLOv11 model variants (n, s, m, i, x) on a custom dataset of 2,285 labelled images representing four delivery vehicle classes: FedEx, Other-Vehicles, UPS, and USPS-Truck. The dataset is meticulously curated to capture diverse delivery vehicle scenarios and split into training, validation, and test sets. Each variant was fine-tuned using uniform settings: 20 epochs, an input resolution of 640×640 pixels, and a batch size of 16.

Fichier principal
Vignette du fichier
Kishor17122024AJRCOS128004.pdf (675.67 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04838801 , version 1 (16-12-2024)

Licence

Identifiants

Citer

Rabinandan Kishor. Performance Benchmarking of YOLOv11 Variants for Real-Time Delivery Vehicle Detection: A Study on Accuracy, Speed, and Computational Trade-offs. Asian Journal of Research in Computer Science, 2024, 17 (12), pp.108 - 122. ⟨10.9734/ajrcos/2024/v17i12532⟩. ⟨hal-04838801⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More