Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry
Résumé
NTFPs play a crucial role in local ecosystems and economies, especially in rural areas where they are an important source of income and food security. The main objective of the study is to characterize the physicochemical properties of oils from these NTFPs in order to better understand their economic, food and industrial potential. This includes the analysis of fatty acids, minor compounds, as well as functional properties such as acidity, saponification index and iodine. The kernels of the NTFPs studied are rich in proteins with contents of 18.9% for Blighia sapida, 21% for chrysophyllum albidum, 22.5% for carapa procera and 18.9% for Tieghemella heckelii. In addition, these almonds are rich in oil with a content of 47.7% Tieghemella heckelii, 52.2%, Blighia sapida, 52% Chrysophyllum albidum and 54% carapa procera. These plants are oilseeds. These lipids have low acidity levels varying between 1.2 ± 0.2 to 2.6 ± 0.3%. The iodine values of the oil are 73.1 ±0.4 for Chrysophyllum albidum, 70 ± 0.3 for Carapa procera, 93.2±0.5, for Blighia sapida and 91.7 ±0.2 Tieghemella heckelii. Regarding the saponification indices the values found are 193.7±0.8 for Blighia sapida, 189.4±0.7 mgKOH/g for Carapa procera, 154.6±0.2 for Chrysophyllum albidum and 147.3 ± 0.5 for Tieghemella heckelii. The saponification indices are between 147.3 ± 0.5 to 193.7 ± 0.8. The analysis of the composition of free fatty acids showed that Tieghemella heckelii oil is mainly composed of oleic acid at 53.6±0.1 and stearic acid at 38.5±0.3. Blighia sapida oil's major compounds are oleic acid (54.6±0.1%), palmitic acid (24.2±0.2%) and stearic acid (16.4±0.0 %). Carapa procera oil is mainly composed of oleic acid at 50.7±0.0%, palmitic acid at 23±0.1%, linoleic acid at 11±0.0% and stearic acid 10.4±0.1%. As for Chrysophyllum albidum oil, it is mainly composed of oleic acid at 47.6±0.3% and α-linolenic acid 17.8±0.1%. The results show that β-sitosterol and γ-tocopherol constitute the major compounds in all the oils studied. The results show that NTFP oils can be a sustainable alternative to conventional oils, making them attractive for growing sectors, particularly those linked to sustainable development. Thus, this study makes a significant contribution to the promotion of NTFPs with a view to economic and environmental sustainability, while highlighting their potential role in the development of modern agroforestry.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |