Toward a Criticality-Guided Sampling Strategy to Reduce Tests for Automated Driving Validation - Archive ouverte HAL
Article Dans Une Revue Data Science for Transportation Année : 2024

Toward a Criticality-Guided Sampling Strategy to Reduce Tests for Automated Driving Validation

Vers une stratégie d'échantillonnage guidée par un indicateur de criticalité en vue de réduire les tests de validation des systèmes de conduite automatisée

Résumé

The validation and certification of Connected and Automated Vehicles (CAV) are crucial prior to their deployment in the real world, and various approaches have been developed to tackle this challenge. The scenario-based approach holds particular promise as it reduces the number of scenarios required to test and certify CAV systems. Various sampling strategies might be applied at various stages of the scenarios’ modeling. We offer to fill a gap identified when considering scenarios modeled at the functional stage. We develop a criticality-guided sampling strategy to streamline the testing process of CAV by selecting functional scenarios that strike a balance between the diversity of encountered situation and their criticality level. This sampling process occurs in two phases: (i) a stratification based on clustering methods applied to the entire set of functional scenarios, (ii) a selection within these groups to encompass a broad spectrum of highly critical scenarios. It achieves a decision-making methodology to find a trade-off between criticality and diversity coverage when selecting a restricted set of scenarios to assess CAV.
Fichier sous embargo
Fichier sous embargo
0 11 19
Année Mois Jours
Avant la publication
mercredi 10 décembre 2025
Fichier sous embargo
mercredi 10 décembre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04828646 , version 1 (10-12-2024)

Identifiants

Citer

Hugues Blache, Pierre-Antoine Laharotte, Nour-Eddin El Faouzi. Toward a Criticality-Guided Sampling Strategy to Reduce Tests for Automated Driving Validation. Data Science for Transportation, 2024, 6 (3), pp.26. ⟨10.1007/s42421-024-00110-4⟩. ⟨hal-04828646⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More