Minimizing quotient regularization model - Archive ouverte HAL
Article Dans Une Revue Inverse Problems and Imaging Année : 2024

Minimizing quotient regularization model

Chao Wang
  • Fonction : Auteur
Guy Gilboa
  • Fonction : Auteur
Yifei Lou
  • Fonction : Auteur

Résumé

Quotient regularization models (QRMs) are a class of powerful regularization techniques that have gained considerable attention in recent years, due to their ability to handle complex and highly nonlinear data sets. However, the nonconvex nature of QRM poses a significant challenge in finding its optimal solution. We are interested in scenarios where both the numerator and the denominator of QRM are absolutely one-homogeneous functions, which is widely applicable in the fields of signal processing and image processing. In this paper, we utilize a gradient flow to minimize such QRM in combination with a quadratic data fidelity term. Our scheme involves solving a convex problem iteratively. The convergence analysis is conducted on a modified scheme in a continuous formulation, showing the convergence to a stationary point. Numerical experiments demonstrate the effectiveness of the proposed algorithm in terms of accuracy, outperforming the state-of-the-art QRM solvers.
Fichier principal
Vignette du fichier
2308.04095v1.pdf (677.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04825730 , version 1 (08-12-2024)

Identifiants

Citer

Chao Wang, Jean-Francois Aujol, Guy Gilboa, Yifei Lou. Minimizing quotient regularization model. Inverse Problems and Imaging , 2024, ⟨10.3934/ipi.2024041⟩. ⟨hal-04825730⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More