Reliable Machine Learning for Data-Driven Nonlinear Elasticity and Viscoelasticity - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Reliable Machine Learning for Data-Driven Nonlinear Elasticity and Viscoelasticity

Résumé

We pr esent a mechanics-informed machine learning framework for the data-driven constitutive modeling of nonlinearly elastic and viscoelastic materials. By design, it forces the architecture of a neural network to satisfy a list of hard constraints, including: dynamic stability, material stability, and internal variable stability; objectivity; consistency; fading memory; recovery of elasticity; and the 2nd law of thermodynamics. We show that e mbedding these notions in a learning approach reduces sensitivity to noise and promotes robustness to inputs outside the training domain.
Fichier principal
Vignette du fichier
hal-04823012.pdf (480.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04823012 , version 1 (06-12-2024)

Identifiants

  • HAL Id : hal-04823012 , version 1

Citer

Charbel Farhat. Reliable Machine Learning for Data-Driven Nonlinear Elasticity and Viscoelasticity. CSMA 2024, CNRS, CSMA, ENS Paris-Saclay, Centrale Supélec, May 2024, Giens, France. ⟨hal-04823012⟩

Collections

CSMA CSMA2024
0 Consultations
0 Téléchargements

Partager

More