Protracted carbon burial following the Early Jurassic Toarcian Oceanic Anoxic Event (Posidonia Shale, Lower Saxony Basin, Germany)
Résumé
Abstract Lower Jurassic marine basins across the northwest European epicontinental shelf were commonly marked by deposition of organic-rich black shales. Organic-carbon burial was particularly widespread during the Toarcian Oceanic Anoxic Event (T-OAE: also known as the Jenkyns Event) with its accompanying negative carbon-isotope excursion (nCIE). Lower Toarcian black shales in central and southern Germany are known as the Posidonia Shale Formation (Posidonienschiefer) and are thought to have formed during the T-OAE nCIE. Here, we present stratigraphic (carbon-isotope, Rock–Eval, calcareous nannofossil) data from the upper Pliensbachian and lower Toarcian strata from a core drilled on the northern flank of the Lower Saxony Basin, north–west Germany. The bio- and chemostratigraphic framework presented demonstrates that (i) the rock record of the T-OAE at the studied locality registered highly condensed sedimentation and/or multiple hiatuses and (ii) the deposition of organic-rich black shale extended significantly beyond the level of the T-OAE, thereby contrasting with well-studied sections of the Posidonia Shale in southern Germany but showing similarities with geographically nearby basins such as the Paris Basin (France). Prolonged and enhanced organic-carbon burial represents a negative feedback mechanism in the Earth system, with locally continued environmental perturbance accelerating the recovery of the global climate from T-OAE-associated hyperthermal conditions, whilst also accelerating a return to more positive δ 13 C values in global exogenic carbon pools. Graphical abstract
Domaines
Planète et Univers [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|