Absolutely minimal semi-Lipschitz extensions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Absolutely minimal semi-Lipschitz extensions

Extensions semi-Lipschitz absolument minimales.

Résumé

The notion of quasi-metric space arises by revoking the symmetry from the definition of a distance. Semi-Lipschitz functions appear naturally as morphisms associated with the new structure. In this work we establish existence of optimal (that is, absolutely minimal) extensions of real-valued semi-Lipschitz functions from a subset of the space to the whole space. This is done in two different ways: first, by adapting the Perron method from the classical case to this asymmetric case and second, by means of an iteration scheme for (an unbalanced version of ) the tug-of-war game, initiating the algorithm from a McShane extension. This new iteration scheme provides, even in the symmetric case of a metric space, a constructive way of establishing existence of absolutely minimal Lipschitz extensions of real-valued Lipschitz functions.

Fichier principal
Vignette du fichier
DLV_2024-12-03.pdf (558.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04817564 , version 1 (03-12-2024)

Identifiants

  • HAL Id : hal-04817564 , version 1

Citer

Aris Daniilidis, Minh Lê, Francisco Venegas. Absolutely minimal semi-Lipschitz extensions. 2024. ⟨hal-04817564⟩

Collections

TDS-MACS
0 Consultations
0 Téléchargements

Partager

More