CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing - Archive ouverte HAL
Article Dans Une Revue (Data Paper) Nature Communications Année : 2024

CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing

James Wohlschlegel
Florent Waltz

Résumé

Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here, we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a “one CLSY per Pol IV” model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null and clsy quadruple mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
Fichier principal
Vignette du fichier
s41467-024-54268-0.pdf (1.98 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04812777 , version 1 (01-12-2024)

Licence

Identifiants

Citer

Luisa Felgines, Bart Rymen, Laura M Martins, Guanghui Xu, Calvin Matteoli, et al.. CLSY docking to Pol IV requires a conserved domain critical for small RNA biogenesis and transposon silencing. Nature Communications, 2024, 15 (1), pp.10298. ⟨10.1038/s41467-024-54268-0⟩. ⟨hal-04812777⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More