Occupational exposure to aerosols in two French airports: multi-year lung function changes
Résumé
Abstract As differential exposure to airport-generated aerosols may affect employee lung function, the main objective of this study was to longitudinally evaluate spirometry measures among Air France employees. In addition, an exploratory exposure assessment to airport aerosol was performed in a small cohort of workers using personal monitoring devices. Change in lung function over a ~6.6-yr period was documented for office workers (n = 68) and mechanics (n = 83) at Paris-Roissy airport, France and terminal (n = 29), or apron (n = 35) workers at Marseille airport, France. Overall, an excessive decline in lung function was found for 24.75% of airport workers; excessive decline occurred more often for terminal workers (44.83%) as compared to mechanics (14.47%; P = 0.0056), with a similar tendency for apron workers (35.29%) as compared to mechanics (P = 0.0785). Statistically significant differences/tendencies were detected among the yearly rates of change for %-predicted values of forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and from 25% to 75% forced expiratory flow. For the latter variables, the terminal and/or apron workers at Marseille generally had significantly faster lung function decline as compared to office workers and/or mechanics in Paris, although the latter were exposed to a higher level of elemental carbon. No relation between lung function decline and exposure to airport tarmac environments was evidenced. Multivariate exploration of individual variables representing sex, smoking, atopy, respiratory disease, residential PM2.5 pollution, the peak size of particles in lung exhalates or exhaled carbon monoxide at the time of follow-up failed to explain the observed differences. In conclusion, this study documents the first evidence of excessive lung function decline among certain airport workers in France, although the identification of emission sources (environmental factors, aircraft exhaust, etc) remains challenging.