The Enriched $q$-Monomial Basis of the Quasisymmetric Functions - Archive ouverte HAL
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2024

The Enriched $q$-Monomial Basis of the Quasisymmetric Functions

Darij Grinberg
  • Fonction : Auteur
  • PersonId : 1077523

Résumé

We construct a new family $\left( \eta_{\alpha}^{\left( q\right) }\right)_{\alpha\in\operatorname*{Comp}}$ of quasisymmetric functions for each element $q$ of the base ring. We call them the "enriched $q$-monomial quasisymmetric functions". When $r:=q+1$ is invertible, this family is a basis of $\operatorname*{QSym}$. It generalizes Hoffman's "essential quasi-symmetric functions" (obtained for $q=0$) and Hsiao's "monomial peak functions" (obtained for $q=1$), but also includes the monomial quasisymmetric functions as a limiting case. We describe these functions $\eta_{\alpha}^{\left( q\right) }$ by several formulas, and compute their products, coproducts and antipodes. The product expansion is given by an exotic variant of the shuffle product which we callthe "stufufuffle product'' due to its ability to pick several consecutive entries from each composition. This "stufufuffle product'' has previously appeared in recent work by Bouillot, Novelli and Thibon, generalizing the "block shuffle product'' from the theory of multizeta values.
Fichier principal
Vignette du fichier
12409-PDF file-51675-1-10-20241011.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04800666 , version 1 (24-11-2024)

Identifiants

Citer

Darij Grinberg, Ekaterina A. Vassilieva. The Enriched $q$-Monomial Basis of the Quasisymmetric Functions. The Electronic Journal of Combinatorics, 2024, 31 (4), ⟨10.37236/12409⟩. ⟨hal-04800666⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More