An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading - Archive ouverte HAL
Article Dans Une Revue International Journal of Solids and Structures Année : 2025

An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading

Y. Wang
  • Fonction : Auteur
B. Hou

Résumé

Shape-memory alloys (SMAs) exhibit superelastic behavior due to reversible phase transformations. Under dynamic (impact) loading, phase transformation is experimentally observed to occur along a band whose front propagates throughout the specimen. However, unlike the static case, the nucleation and propagation of these bands require further understanding. Recently, a Finite Element Method (FEM) simulation based on Thamburaja and Nikabdullah's constitutive model successfully reproduced the experimental observations. In this study, the model is revisited in the specific case of a one-dimensional dynamic tension test, which allows for the derivation of an analytical closed-form one-dimensional stress-strain relation. When compared to FEM simulations of a single element, this analytical solution shows excellent agreement. From this closed form stress-strain relation, the propagation speed of the phase transformation shock front can be analytically computed. It also highlights that the shock front speed is primarily controlled by the strain reached after the complete transformation from the Austenite to the Martensite phase.
Fichier sous embargo
Fichier sous embargo
0 4 28
Année Mois Jours
Avant la publication
vendredi 16 mai 2025
Fichier sous embargo
vendredi 16 mai 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04799846 , version 1 (23-11-2024)

Identifiants

Citer

Y. Wang, B. Hou, S. Roux, Han Zhao. An analytical model for the phase transformation front propagation in superelastic SMA under impact tensile loading. International Journal of Solids and Structures, 2025, 308, pp.113151. ⟨10.1016/j.ijsolstr.2024.113151⟩. ⟨hal-04799846⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More