Gaskets of $O(2)$ loop-decorated random planar maps - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Gaskets of $O(2)$ loop-decorated random planar maps

Résumé

We prove that for $n = 2$ the gaskets of critical rigid $O(n)$ loop-decorated random planar maps are $3/2$-stable maps. The case $n = 2$ thus corresponds to the critical case in random planar maps. The proof relies on the Wiener-Hopf factorisation for random walks. Our techniques also provide a characterisation of weight sequences of critical $O(2)$ loop-decorated maps.

Dates et versions

hal-04799617 , version 1 (23-11-2024)

Identifiants

Citer

Emmanuel Kammerer. Gaskets of $O(2)$ loop-decorated random planar maps. 2024. ⟨hal-04799617⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More