The role of the dimension in uniqueness results for the stationary quasi-geostrophic system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

The role of the dimension in uniqueness results for the stationary quasi-geostrophic system

Résumé

In this paper, we study a Liouville-type theorem for the stationary fractional quasi-geostrophic equation in various dimensions. Indeed, our analysis focuses on dimensions n = 2, 3, 4 and we explore the uniqueness of weak solutions for this fractional system. We demonstrate here that, under some specific Lebesgue integrability information, the only admissible solution to the stationary fractional quasi-geostrophic system is the trivial one and this result provides a comprehensive understanding of how the dimension in connection to the fractional power of the Laplacian influences the uniqueness properties of weak solutions.
Fichier principal
Vignette du fichier
Liouville_SQG_V1.pdf (388.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04797249 , version 1 (22-11-2024)

Licence

Identifiants

  • HAL Id : hal-04797249 , version 1

Citer

Diego Chamorro, Manuel Fernando Cortez. The role of the dimension in uniqueness results for the stationary quasi-geostrophic system. 2024. ⟨hal-04797249⟩
0 Consultations
0 Téléchargements

Partager

More