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Abstract

In this paper, we study a Liouville-type theorem for the stationary fractional quasi-geostrophic equation in

various dimensions. Indeed, our analysis focuses on dimensions n = 2, 3, 4 and we explore the uniqueness of

weak solutions for this fractional system. We demonstrate here that, under some specific Lebesgue integrability

information, the only admissible solution to the stationary fractional quasi-geostrophic system is the trivial one

and this result provides a comprehensive understanding of how the dimension in connection to the fractional

power of the Laplacian influences the uniqueness properties of weak solutions.
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1 Introduction and presentation of the results

The study of fractional equations has gained significant attention in recent years due to their ability to
model complex physical phenomena involving turbulence and fluid dynamics in various contexts, see
e.g. [6], [18], [21], [22]. One of the fundamental questions in the theory of partial differential equations
(PDEs) is the existence, uniqueness and regularity of solutions to these equations and in this regard,
Liouville-type theorems may play a crucial role by establishing conditions under which a solution to
some equation is trivial (i.e. identically zero).

In particular, this paper focuses on the stationary fractional quasi-geostrophic equation which is
used to describe phenomena in atmospheric and oceanic dynamics (for more details see [7] and [19])
and we will establish some uniqueness results for the following system:

(−∆)
α
2 θ + A[θ] · ~∇θ − f = 0, with 0 < α < 2, x ∈ Rn, (1.1)

where θ : Rn −→ R is the variable, the fractional operator (−∆)
α
2 is defined at the Fourier level by the

symbol |ξ|α and f : Rn −→ R is a given external force. The vector A[θ] depends on θ in the following
manner:

A[θ] = [A1(θ), A2(θ), · · · , An(θ)],
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where the operators Aj for 1 ≤ j ≤ n are assumed to be singular integral operators that satisty the
boundedness property

‖A[θ]‖Lp ≤ CA‖θ‖Lp , (1.2)

for all 1 < p < +∞ (as long as θ ∈ Lp(Rn)). Moreover, the vector A[θ] is assumed to be divergence-free,
i.e. we have

div(A[θ]) = 0. (1.3)

Although the evolution variants of the previous system was considerably studied in [8], [9] and [16]
(see also the references therein), to the best of our knowledge, the study of the stationary system (1.1)
does not seem to have been done (see however [1] for the inviscid 2D problem).

Thus, the main purpose of this article is to establish the uniqueness of the trivial solution for the
system (1.1) under some hypothesis stated in terms of Lebesgue spaces. This research program is
known in the literature as Liouville-type theorems and has been applied mainly for the Navier-Stokes
equations, see [4], [5], [10], [12], [13], [14], [20] and the references therein for more details. See also
[24] for the fractional Navier-Stokes problem.

To start, in our first result we construct weak solutions for the system (1.1) in the space Ḣ
α
2 (Rn):

Theorem 1 (Existence) Consider n ≥ 2. Fix 0 < α < 2 and consider f ∈ Ḣ−
α
2 (Rn) an external

force. There exists θ ∈ Ḣ
α
2 (Rn) that satisfies in the weak sense the equation (1.1).

The proof of this theorem is rather standard and it relies in an application of the Leray-Schauder
fixed point argument (see [15, Chapter 16]). Note in particular that the resolution space Ḣ

α
2 (Rn)

for the system (1.1) is naturally determined by the structure of the equation when looking for energy
estimates. Indeed, if we (formally) multiply the equation (1.1) by θ and we integrate, we obtain∫

Rn
[(−∆)

α
2 θ + A[θ] · ~∇θ − f ]θdx = 0,

using the divergence free property of the vector field A, we easily obtain the expression∫
Rn
|(−∆)

α
4 θ|2dx =

∫
Rn
fθdx,

from which, by the Ḣ−
α
2 − Ḣ

α
2 duality and by the Young inequalities for the product, we deduce the

control
‖θ‖

Ḣ
α
2 (Rn) ≤ C‖f‖Ḣ−α2 (Rn).

Although these computations are completely formal (we will provide a rigorous proof in the Appendix
A), they give a good idea why the space Ḣ

α
2 (Rn) natural. Remark however that the existence results

are obtained via an approximation procedure and the Leray-Schauder fixed point argument does not
provide any information about the uniqueness of the solutions.

In the following result, which is the main theorem of this article, we will address the problem
of uniqueness of the weak solutions of the system (1.1) when f = 0. As we shall see, the behavior
of this problem will vary with the dimension n = 2, 3, 4 and with the values of the fractional power
of the Laplacian 0 < α < 2. Let us mention that the key ingredient of our analysis is related to
a suitable decay at infinity of the solutions θ. Indeed, due to the Sobolev embeddings, we have

θ ∈ Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) so we dispose of a “natural” decay at infinity of the solution θ, but this

information doesn’t seem enough to deduce that the unique solution of the equation (1.1) when f = 0
is the trivial solution θ ≡ 0. However, under some suitable additional information, stated below in
terms of Lebesgue spaces, then we can obtain the uniqueness of the trivial solution:
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Theorem 2 (Uniqueness) In the setting of the Theorem 1 with n = 2, 3, 4, consider a solution
θ ∈ Ḣ

α
2 (Rn) of the equation (1.1) and assume that f = 0. Assume that is θ smooth and we have

θ ∈ L
2n−ε
n−α (Rn) with 0 < ε� 1, moreover:

1) If 0 < α < n
3 < 2, for n = 2, 3, 4 we will ask the additional condition θ ∈ L

2n+ν
n−α (Rn) for some

real parameter ν such that (n− 3α) < ν < 1 + (n− 3α),

2) If n+2
3 ≤ α < 2 for n = 2, 3, we will assume θ ∈ L

3n
n−1 (Rn),

then, under these assumptions, the unique solution of the system (1.1) is the trivial solution θ ≡ 0.

Some remarks are in order there. First note that since we are considering Ḣ
α
2 (Rn) solutions we have

at our disposal (via the Sobolev embeddings) the critical Lebesgue information L
2n
n−α (Rn). However,

and regardless to the dimension, this information seems not enough when dealing with the fractional
Laplacian: indeed, at some point (see the formula (3.6) below) we need to use the Leibniz fractional
rule to study terms of the form (−∆)

α
2 (θϕR) (where θ is the solution of the equation (1.1) and ϕR

is a cut off function) and this requires some additional information which is given by the hypothesis

θ ∈ L
2n−ε
n−α (Rn) -which is close to the critical Lebesgue space since the positive parameter ε > 0 can

be made very small but not equal to 0. Note next that outside the two cases stated in the theorem
above, it is not necessary to impose hypothesis in order to obtain the uniqueness of the trivial solution.
Remark also that the conditions 1) and 2) asked in the theorem above are essentially technical and
they are related to the algebraic relationships between the indexes of the Sobolev embeddings. Note
that we only considered here the dimensions n = 2, 3, 4 but the same ideas and techniques can be
extended without problem to higher dimensions. Let us point out finally that the uniqueness of the

trivial solution θ ≡ 0 with the sole information θ ∈ Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) remains, to the best of our

knowledge, a difficult open problem.

In the Theorem 2 above we assumed that the solutions are smooth. It is worth to mention here
that the problem of the regularity of the weak solutions for the system (1.1) is naturally related to
the power 0 < α < 2 of the fractional Laplacian. Indeed, if this parameter α is big enough then the
regularity of the solutions is not difficult to obtain (see the Appendix B below), however if α is small
(in particular when 0 < α ≤ 1), then the regularity of the weak solutions obtained via the Theorem 1
is a completely open problem which is not studied here.

The plan of the article is the following. In Section 2 we recall some of the tools that will be used
in this article and in Section 3 we prove the main result (Theorem 2). In the Appendix A we prove
the Theorem 1 and in the Appendix B we establish some regularity results for the system (1.1).

2 Preliminaries

For 1 < p < +∞ and for s > 0 we define the homogeneous Sobolev spaces Ẇ s,p(Rn) by the condition

‖f‖Ẇ s,p(Rn) = ‖(−∆)
s
2 f‖Lp(Rn) < +∞.

In the special case when p = 2 we simply write Ẇ s,2(Rn) = Ḣs(Rn). The non-homogeneous Sobolev
spaces W s,p(Rn) are defined by the condition

‖f‖W s,p(Rn) = ‖f‖Lp(Rn) + ‖(−∆)
s
2 f‖Lp(Rn) < +∞,

from which we easily deduce the embedding W s,p(Rn) ⊂ Ẇ s,p(Rn). Note also that, if s1 > s0 > 0
then we have the space inclusion W s1,p(Rn) ⊂ W s0,p(Rn). As the Sobolev spaces will constitute our
main framework, we recall in the following lemmas some classical and useful results.
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Lemma 2.1 (Sobolev embeddings)

1) For 0 < s < n
p and 1 < p, q < +∞, if we have the relationship −n

q = s − n
p , then we have the

classical Sobolev inequality
‖f‖Lq(Rn) ≤ C‖f‖Ẇ s,p(Rn).

In particular we will use
‖f‖

L
2n
n−α (Rn)

≤ C‖f‖
Ḣ
α
2 (Rn).

2) If s = n
p , then we have the space embedding W s,p(Rn) ⊂ Lq(Rn) for all p ≤ q < +∞, i.e. we have

‖f‖Lq(Rn) ≤ C‖f‖Ẇ s,p(Rn).

3) If 0 < s0 < s1 and 1 < p0, p1 < +∞ are such that s0 − n
p0

= s1 − n
p1

, then we have the following
Sobolev space inclusion:

Ẇ s1,p1(Rn) ⊂ Ẇ s0,p0(Rn).

Lemma 2.2 (Fractional Leibniz rule)

1) Consider f, g two smooth functions. Then we have the estimate

‖(−∆)
s
2 (fg)‖Lp(Rn) ≤ C‖(−∆)

s
2 f‖Lp0 (Rn)‖g‖Lp1 (Rn) + C‖f‖Lq0‖(−∆)

s
2 g‖Lq1 (Rn),

where 1
p = 1

p0
+ 1

p1
= 1

q0
+ 1

q1
, with 0 < s, 1 < p < +∞ and 1 < p0, p1, q0, q1 ≤ +∞.

2) For 0 < s, s1, s2 < 1 with s = s1 + s2 and 1 < p, p1, p2 < +∞ with 1
p = 1

p1
+ 1

p2
, we have

‖(−∆)
s
2 (fg)− (−∆)

s
2 (f)g − (−∆)

s
2 (g)f‖Lp(Rn) ≤ C‖(−∆)

s1
2 f‖Lp1 (Rn)‖(−∆)

s2
2 g‖Lp2 (Rn).

See [17] and [11] for a proof of these estimates.

In the case of the L2-based Sobolev spaces we also have the following useful estimate:

Lemma 2.3 (Product rule in Sobolev spaces) For 0 ≤ s < +∞ and 0 < δ < n
2 ,

‖fg‖
Ḣs+δ−n2 (Rn) ≤ C

(
‖f‖Ḣδ(Rn)‖g‖Ḣs(Rn) + ‖g‖Ḣδ(Rn)‖f‖Ḣs(Rn)

)
.

See [15, Lemma 7.3] for a proof of this inequality.

3 Uniqueness

We study now the announced uniqueness results for the equation (1.1) and we will start with some
steps that are independent from the dimension. Indeed, consider θ ∈ Ḣ

α
2 (Rn) a smooth solution of

the equation (1.1) and for R > 1 let us introduce the cut off function ϕR defined by

ϕR(x) = ϕ
( x
R

)
, (3.1)

where ϕ ∈ C∞0 (Rn), with ϕ(x) = 1 for |x| ≤ 1
2 and ϕ(x) = 0 for |x| ≥ 1. We gather in the next lemma

some properties of the function ϕR given above:

Lemma 3.1 For the function ϕR defined in (3.1) we have:

1) the support of ϕR satisfies supp(ϕR) ⊂ BR = B(0, R),

2) for all 1 ≤ p ≤ +∞ we have ‖ϕR‖Lp(Rn) ≤ CR
n
p ,
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3) the support of ∇ϕR and ∆ϕR satisfies

supp(∇ϕR), supp(∆ϕR) ⊂ CR = {x ∈ Rn : R2 ≤ |x| ≤ R},

4) for all 1 ≤ p ≤ +∞ we have ‖∇ϕR‖Lp(Rn) = ‖∇ϕR‖Lp(CR) ≤ CR
−1+n

p and we also have

‖∆ϕR‖Lp(Rn) = ‖∆ϕR‖Lp(CR) ≤ CR
−2+n

p ,

5) for all 1 < p < +∞ and for α > 0 we have ‖(−∆)
α
2 ϕR‖Lp(Rn) ≤ CR

−α+n
p .

The proof of these facts is straightforward and left to the reader.

Now we multiply the equation (1.1) by θϕR and we integrate to obtain (recall that we have assumed
here that f = 0 and that the solution θ is smooth):∫

Rn

[
(−∆)

α
2 θ + A[θ] · ~∇θ

]
(θϕR)dx = 0.

Due to the divergence free property of the vector A[θ] we have the identity A[θ] · ~∇θ = div(A[θ]θ) and
we write ∫

Rn

(
(−∆)

α
2 θ
)

(θϕR)dx+

∫
Rn
div(A[θ]θ)(θϕR)dx = 0. (3.2)

We study now each one of these terms separately.

• Indeed, for the first term in (3.2) we write, using the properties of the operator (−∆)
α
2 :∫

Rn

(
(−∆)

α
2 θ
)

(θϕR) dx =

∫
Rn

(−∆)
α
4 θ
[
(−∆)

α
4 (θϕR)

]
dx

=

∫
Rn

(−∆)
α
4 θ
[(

(−∆)
α
4 θ
)
ϕR + (−∆)

α
4 (θϕR)−

(
(−∆)

α
4 θ
)
ϕR

]
dx,

and we have∫
Rn

(
(−∆)

α
2 θ
)

(θϕR) dx =

∫
BR

|(−∆)
α
4 θ|2ϕRdx

+

∫
Rn

(−∆)
α
4 θ
[
(−∆)

α
4 (θϕR)−

(
(−∆)

α
4 θ
)
ϕR

]
dx, (3.3)

where we used the fact that supp(ϕR) ⊂ BR in the second integral above.

• For the second term of (3.2) we have by an integration by parts:∫
Rn
div(A[θ]θ)(θϕR)dx = −

∫
Rn

(
A[θ] · ~∇θ

)
(θϕR) dx−

∫
Rn
θ(A[θ]θ) · ~∇ϕRdx

= −
∫
Rn
div(A[θ]θ)(θϕR)dx−

∫
Rn
θ(A[θ]θ) · ~∇ϕRdx,

so we obtain the identity∫
Rn
div(A[θ]θ)(θϕR)dx = −1

2

∫
R2

(A[θ]θ
2) · ~∇ϕRdx. (3.4)

Thus, with the identities (3.3) and (3.4), we can thus rewrite the formula (3.2) in the following manner:∫
BR

|(−∆)
α
4 θ|2ϕRdx =

∫
Rn

(−∆)
α
4 θ
[(

(−∆)
α
4 θ
)
ϕR − (−∆)

α
4 (θϕR)

]
dx+

1

2

∫
Rn

(A[θ]θ
2) · ~∇ϕRdx.
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We recall now that since 0 ≤ ϕR(x) ≤ 1 and ϕR(x) = 1 if |x| < R
2 , we have the estimate∫

BR
2

|(−∆)
α
4 θ|2dx ≤

∫
BR

|(−∆)
α
4 θ|2ϕRdx,

so we can write∫
BR

2

|(−∆)
α
4 θ|2dx ≤

∫
Rn

(−∆)
α
4 θ
[(

(−∆)
α
4 θ
)
ϕR − (−∆)

α
4 (θϕR)

]
dx︸ ︷︷ ︸

(I1)

+
1

2

∫
Rn

(A[θ]θ
2) · ~∇ϕRdx︸ ︷︷ ︸

(I2)

, (3.5)

and we will prove now that we have lim
R→+∞

|I1| = 0 and lim
R→+∞

|I2| = 0.

3.1 Estimates for the term I1

For the term I1 of the expression (3.5) we write, by the Cauchy-Schwartz inequality

|I1| =

∣∣∣∣∫
Rn

(−∆)
α
4 θ
[(

(−∆)
α
4 θ
)
ϕR − (−∆)

α
4 (θϕR)

]
dx

∣∣∣∣
≤ ‖(−∆)

α
4 θ‖L2(Rn)

∥∥∥((−∆)
α
4 θ
)
ϕR − (−∆)

α
4 (θϕR)

∥∥∥
L2(Rn)

≤ ‖θ‖
Ḣ
α
2 (Rn)

(∥∥∥(−∆)
α
4
(
θϕR

)
−
(

(−∆)
α
4 θ
)
ϕR −

(
(−∆)

α
4 ϕR

)
θ
∥∥∥
L2(Rn)

+
∥∥∥((−∆)

α
4 ϕR

)
θ
∥∥∥
L2(Rn)

)
.

We apply now the second point of Lemma 2.2 to obtain the estimate

|I1| ≤ ‖θ‖Ḣ α
2 (Rn)

(
‖(−∆)

α1
4 ϕR‖Lp1 (Rn)‖(−∆)

α2
4 θ‖Lp2 (Rn) +

∥∥∥((−∆)
α
4 ϕR

)
θ
∥∥∥
L2(Rn)

)
. (3.6)

At this point we use the hypothesis θ ∈ L
2n−ε
n−α (Rn) (where 0 < ε� 1), thus by the Hölder inequalities

with 1
2 = 2α−ε

4n−2ε + n−α
2n−ε , we can write:

|I1| ≤ ‖θ‖Ḣ α
2 (Rn)

(
‖(−∆)

α1
4 ϕR‖Lp1 (Rn)‖(−∆)

α2
4 θ‖Lp2 (Rn) +

∥∥∥(−∆)
α
4 ϕR

∥∥∥
L

4n−2ε
2α−ε (Rn)

‖θ‖
L

2n−ε
n−α (Rn)

)
,

now, by the last point of the Lemma 3.1 we have ‖(−∆)
α1
4 ϕR‖Lp1 (Rn) ≤ CR

−α1
2
+ n
p1 as well as

‖(−∆)
α
4 ϕR‖

L
4n−2ε
2α−ε (Rn)

≤ CR−
α
2
+n( 2α−ε

4n−2ε
) and thus we obtain

|I1| ≤ ‖θ‖Ḣ α
2 (Rn)

(
CR

−α1
2
+ n
p1 ‖(−∆)

α2
4 θ‖Lp2 (Rn) + CR−

α
2
+n( 2α−ε

4n−2ε
)‖θ‖

L
2n−ε
n−α (Rn)

)
.

Let us also note that, due to the complex interpolation theory (see [2, Theorem 6.4.5.]) we have[
Ḣ

α
2 , L

2n−ε
n−α

]
ν

= Ẇ
α2
2
,p2 and ‖(−∆)

α2
4 θ‖Lp2 (Rn) = ‖θ‖

Ẇ
α2
2 ,p2 (Rn)

≤ C‖θ‖ν
Ḣ
α
2 (Rn)

‖θ‖1−ν
L

2n−ε
n−α (Rn)

,
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with the relationships

α2 = να,
1

p2
=
ν

2
+ (1− ν)

n− α
2n− ε

for some 0 < ν < 1, (3.7)

so we can write

|I1| ≤ ‖θ‖Ḣ α
2 (Rn)

(
CR

−α1
2
+ n
p1 ‖θ‖ν

Ḣ
α
2 (Rn)

‖θ‖1−ν
L

2n−ε
n−α (Rn)

+ CR−
α
2
+n( 2α−ε

4n−2ε
)‖θ‖

L
2n−ε
n−α (Rn)

)
.

But since we have α = α1 + α2 and 1
2 = 1

p1
+ 1

p2
, following the conditions (3.7) above, we obtain that

α1 = (1− ν)α and 1
p1

= (1− ν) 2α−ε
4n−2ε and we can write

|I1| ≤ ‖θ‖Ḣ α
2 (Rn)

(
CR(1−ν)[ (α−n)ε

4n−2ε
]‖θ‖ν

Ḣ
α
2 (Rn)

‖θ‖1−ν
L

2n−ε
n−α (R2)

+ CR[
(α−n)ε
4n−2ε

]‖θ‖
L

2n−ε
n−α (Rn)

)
.

We remark now that α − n < 0 since 1 < α < 2 and n ≥ 2, thus we obtain that the powers
(1 − ν)[ (α−n)ε4n−2ε ] and [ (α−n)ε4n−2ε ] of the parameter R in the previous expression are negative. Moreover,
since ‖θ‖

Ḣ
α
2 (Rn) < +∞ and ‖θ‖

L
2n−ε
n−α (Rn)

< +∞ by hypothesis, we can write

lim
R→+∞

|I1| ≤ C‖θ‖
Ḣ
α
2 (Rn)

[
‖θ‖ν

Ḣ
α
2 (Rn)

‖θ‖1−ν
L

2n−ε
n−α (Rn)

(
lim

R→+∞
R(1−ν)[ (α−n)ε

4n−2ε
]

)

+‖θ‖
L

2n−ε
n−α (Rn)

(
lim

R→+∞
R[

(α−n)ε
4n−2ε

]

)]
= 0,

from which we easily deduce that
lim

R→+∞
|I1| = 0. (3.8)

Remark 3.1 Note that the study of the term I1 of (3.5) is independent from the dimension n ≥ 2

and it is valid for all 0 < α < 2. Note also that the hypothesis θ ∈ L
2n−ε
n−α (Rn) with a small 0 < ε� 1

is only useful to apply the Kato-Ponce inequalities in the formula (3.6) above and to obtain some
interpolation estimates that provide the suitable information in order to pass to the limit R→ +∞.

3.2 Estimates for the term I2 of (3.5)

We need to estimate the quantity

|I2| ≤
∫
Rn

∣∣∣(A[θ]θ
2) · ~∇ϕR

∣∣∣ dx,
and for this we will distinguish some cases following the values of the parameter 0 < α < 2 and the
dimension n ≥ 2. Indeed:

• If n
3 < α < n+2

3 ≤ 2, (n = 2, 3, 4), by the Hölder inequality with

1 =
n− α

2n
+
n− α

2n
+
n− α

2n
+

3α− n
2n

, (3.9)

we can write

|I2| ≤ ‖A[θ]‖
L

2n
n−α (Rn)

‖θ‖2
L

2n
n−α (Rn)

‖~∇ϕR‖
L

2n
3α−n (Rn)

≤ CA‖θ‖
L

2n
n−α (Rn)

‖θ‖2
L

2n
n−α (Rn)

‖~∇ϕR‖
L

2n
3α−n (Rn)

,
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where in the last line we used the boundedness property of the operator A in Lebesgue spaces
(i.e.. ‖A[θ]‖

L
2n
n−α (Rn)

≤ CA‖θ‖
L

2n
n−α (Rn)

). Now, by the point 4) of the Lemma 3.1, we have

‖~∇ϕR‖
L

2n
3α−n (Rn)

≤ CR−1+n(
3α−n
2n

) and we can write

|I2| ≤ CA‖θ‖3
L

2n
n−α (Rn)

R−1+n(
3α−n
2n

).

We note now that since α < n+2
3 we have −1 + n(3α−n2n ) < 0 moreover recalling that by the

Sobolev inequalities we have ‖θ‖
L

2n
n−α (Rn)

≤ C‖θ‖
Ḣ
α
2 (Rn) < +∞, then we obtain

lim
R→+∞

|I2| = 0.

• If α = n
3 < 2, (n = 2, 3, 4), then we proceed as follows: recalling that we have the embedding

Ḣ
n
6 (Rn) ⊂ L3(Rn) we write by the Hölder inequalities with

1 =
1

3
+

1

3
+

1

3
, (3.10)

|I2| ≤
∫
Rn
|A[θ]||θ|2|~∇ϕR|dx ≤ ‖A[θ]‖L3(Rn)‖θ‖2L3(Rn)‖~∇ϕR‖L∞(Rn)

≤ CA‖θ‖3L3(Rn)CR
−1,

where we used the boundedness property of the operator A in Lebesgue spaces as well as the
properties of the test function ϕR given in the point 4) of the Lemma 3.1. From this estimate,
since we have ‖θ‖L3(Rn) ≤ ‖θ‖Ḣ n

6 (Rn) < +∞, we easily deduce that

lim
R→+∞

|I2| = 0.

• If α = n+2
3 < 2, (n = 2, 3), then we have Ḣ

n+2
6 (Rn) ⊂ L

3n
n−1 (Rn) and recalling that supp(∇ϕR) ⊂

CR = {x ∈ Rn : R2 ≤ |x| ≤ R} we write, by the Hölder inequalities with

1 =
n− 1

3n
+
n− 1

3n
+
n− 1

3n
+

1

n
, (3.11)

|I2| ≤
∫
Rn
|A[θ]||θ|21CR |~∇ϕR|dx ≤ ‖A[θ]‖

L
3n
n−1 (Rn)

‖θ‖2
L

3n
n−1 (CR)

‖~∇ϕR‖Ln(Rn)

≤ CA‖θ‖
L

3n
n−1 (Rn)

‖θ‖2
L

3n
n−1 (CR)

,

since in this case we have ‖~∇ϕR‖Ln(Rn) ≤ C. Now, as we have by the Sobolev embeddings the
uniform control ‖θ‖

L
3n
n−1 (Rn)

≤ C‖θ‖
Ḣ
n+2
6 (Rn)

< +∞ we obtain that lim
R→+∞

‖θ‖
L

3n
n−1 (CR)

= 0, from

which we deduce that
lim

R→+∞
|I2| = 0.

Remark 3.2 Note that in all the previous cases the “natural” Lebesgue information L
2n
n−α (Rn)

(obtained by the Sobolev embedding Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn)) provides enough information to obtain

lim
R→+∞

|I2| = 0. In order to deduce this limit outside these cases we will ask some additional

information over the solution θ ∈ Ḣ
α
2 (Rn).
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• If 0 < α < n
3 < 2, (n = 2, 3, 4), in this case the Lebesgue information given by the Sobolev

embedding Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) is not well suited to use the Hölder inequalities as in (3.9)-(3.11)

above, and we will thus ask the additional condition θ ∈ L
2n+ν
n−α (Rn) for some real parameter

ν such that (n − 3α) < ν < 1 + (n − 3α). Then we have, by the Hölder inequality with
1 = n−α

2n+ν + n−α
2n+ν + n−α

2n+ν + 3α+ν−n
2n+ν :

|I2| ≤
∫
Rn
|A[θ]||θ|2|~∇ϕR|dx ≤ ‖A[θ]‖

L
2n+ν
n−α (Rn)

‖θ‖2
L

2n+ν
n−α (Rn)

‖~∇ϕR‖
L

2n+ν
3α+ν−n (Rn)

≤ CA‖θ‖3
L

2n+ν
n−α (Rn)

CR−1+n(
3α+ν−n
2n+ν

),

but since n(3α+ν−n2n+ν ) < 1 as we have ν < 1 + (n− 3α), we easily obtain

lim
R→+∞

|I2| = 0.

• If n+2
3 ≤ α < 2, (n = 2, 3), the Sobolev embeddings do not provide enough information and

we will ask θ ∈ L
3n
n−1 (Rn), and thus, following the same ideas as in (3.11) above, we obtain

lim
R→+∞

|I2| = 0.

Remark 3.3 Note that in this last case, in dimension n = 3, the additional hypotheses asked
here is L

9
2 (Rn) which corresponds to the best Lebesgue space known to date when we consider the

Liouville-type theorems for the Navier-Stokes equations, see [10, Theorem X.9.5].

�

A Weak solutions in Ḣ
α
2 (Rn)

In order to solve equation (1.1) we will first consider a function φ ∈ C∞0 (Rn) such that 0 ≤ φ(x) ≤ 1
with φ(x) = 1 if |x| ≤ 1 and φ(x) = 0 if |x| > 2, then for R > 1 we set φR(x) = φ( xR). We also
consider a positive test function ϕ ∈ C∞0 (Rn) and we set ϕε(x) = 1

εnϕ(xε ) for ε > 0. With these
auxiliary functions and for some 0 < ρ < 1 we study the following equation

ρ(−∆)θ + (−∆)
α
2 θ − (A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)− f = 0. (A.1)

Remark that, at least formally, if we make ρ, ε→ 0 and R→ +∞, we recover the equation (1.1).

We note now that from the equation (A.1) we can write

θ = TR,ρ,ε(θ), (A.2)

where
TR,ρ,ε(θ) = Lρ

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR) + f

)
, (A.3)

and where the operator Lρ is defined, for a fixed 0 < ρ < 1 by the expression

Lρ(f) =
1

[ρ(−∆) + (−∆)
α
2 ]

(f). (A.4)

The operator Lρ satisfies the following property.

Lemma A.1 Fix 0 < ρ < 1 and consider a regularity index 0 < α < 2. Then, for all parameter σ
such that α ≤ σ ≤ 2 and for any regular function f : Rn −→ R, we have the estimate

‖Lρ(f)‖Ḣσ(Rn) ≤
C

ρ
‖f‖L2(Rn). (A.5)
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Indeed, since we are working in the L2 space, the proof of this estimate follows from the Plancherel
theorem and the definition of the homogeneous Sobolev space Ḣσ. We can thus write

‖Lρ(f)‖Ḣσ(Rn) =

∥∥∥∥∥ (−∆)
σ
2

[ρ(−∆) + (−∆)
α
2 ]

(f)

∥∥∥∥∥
L2(Rn)

=

∥∥∥∥ |ξ|σ

[ρ|ξ|2 + |ξ|α]
f̂(·)

∥∥∥∥
L2(Rn)

.

We remark now that, since α ≤ σ ≤ 2, we have the uniform estimate |ξ|σ
[ρ|ξ|2+|ξ|α] ≤

C
ρ , and we obtain

‖Lρ(f)‖Ḣσ(Rn) ≤
C

ρ

∥∥∥f̂(·)
∥∥∥
L2(Rn)

=
C

ρ
‖f‖L2(Rn),

which is the wished estimate.

Now, in order to obtain a solution for the problem θ = TR,ρ(θ) we will apply the Schaefer fixed
point theorem (see [15, Theorem 16.1]):

Theorem 3 (Schaefer) For 1 < α < 2, consider the following functional space:

Eρ =
{
θ : Rn −→ R : θ ∈ Ḣ1(Rn) ∩ Ḣ

α
2 (Rn)

}
, (A.6)

endowed with the norm

‖θ‖Eρ =
√
ρ‖θ‖Ḣ1(Rn) + ‖θ‖

Ḣ
α
2 (Rn). (A.7)

If we have the following points:

1) the operator TR,ρ,ε defined in (A.3) is continuous and compact in the space Eρ,

2) if θ = λTR,ρ,ε(θ) for any λ ∈ [0, 1], then we have ‖θ‖Eρ ≤M ,

then the equation (A.2) admits at least one solution θ ∈ Eρ.

As we can see, to obtain a solution of the modified problem (A.1), it is enough to verify the two points
of the previous theorem. We decompose our study in some propositions and corollaries that will be
helpful in the sequel.

Proposition A.1 (Continuity) The application TR,ρ,ε is continuous in the space Eρ.

Proof. We start writing

‖TR,ρ,ε(θ)‖Eρ =
√
ρ‖TR,ρ,ε(θ)‖Ḣ1(Rn) + ‖TR,ρ,ε(θ)‖Ḣ α

2 (Rn)

=
√
ρ
∥∥∥Lρ ((A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR) + f

)∥∥∥
Ḣ1(Rn)︸ ︷︷ ︸

(1)

+
∥∥∥Lρ ((A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR) + f

)∥∥∥
Ḣ
α
2 (Rn)︸ ︷︷ ︸

(2)

, (A.8)

and we will study each term above separately.

• We will bound the term (1) above by the quantity ‖θ‖Eρ and the information available over the
external force f . We thus write

(1) ≤
∥∥∥Lρ ((A[θφR] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥
Ḣ1(Rn)

+ ‖Lρ (f)‖Ḣ1(Rn) ,
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and by the definition of the operator Lρ given in (A.4), we write

(1) ≤
∥∥∥∥ 1

[ρ(−∆) + (−∆)
α
2 ]

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥∥
Ḣ1(Rn)

+

∥∥∥∥ 1

[ρ(−∆) + (−∆)
α
2 ]

(f)

∥∥∥∥
Ḣ1(Rn)

,

now for some parameter σ > 0 such that 0 < 2−α
2 < σ < 1 and α < 1 + σ < 2 and by the

definition of the Sobolev space Ḣ1(Rn), we have

(1) ≤

∥∥∥∥∥ (−∆)
1+σ
2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
σ
2

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥∥∥
L2(Rn)

+

∥∥∥∥∥∥ (−∆)
1+α2

2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
α
4

(f)

∥∥∥∥∥∥
L2(Rn)

.

We can thus apply the Lemma A.1 (since we have α < 1 + σ < 2 and α < 1 + α
2 < 2) to obtain

the estimate

(1) ≤ C

ρ

∥∥∥∥ 1

(−∆)
σ
2

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥∥
L2(Rn)

+
C

ρ

∥∥∥∥ 1

(−∆)
α
4

(f)

∥∥∥∥
L2(Rn)

≤ C

ρ

∥∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)
∥∥∥
Ḣ−σ(Rn)

+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,

where in the last control we used the definition of the Sobolev space Ḣ−σ(Rn). At this point we

apply the Hardy-Littlewood-Sobolev embedding L
2n

n+2σ (Rn) ⊂ Ḣ−σ(Rn) (recall that 0 < σ < 1)
and we have

(1) ≤ C

ρ

∥∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)
∥∥∥
L

2n
n+2σ (Rn)

+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,

and by the Hölder inequalities with n+2σ
2n = σ

n + 1
2 we can thus write

(1) ≤ C

ρ

∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR
∥∥
L
n
σ (Rn)

∥∥∥~∇(θφR)
∥∥∥
L2(Rn)

+
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤ C

ρ
‖φR‖L∞(Rn)

∥∥A[(θφR)∗ϕε] ∗ ϕε
∥∥
L
n
σ (Rn)

(
‖(~∇θ)φR‖L2(Rn) + ‖(~∇φR)θ‖L2

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) .

We apply now the Young inequalities with 1 + σ
n = 1

n + n+σ−1
n and the Hölder inequalities with

1
2 = n−α

2n + α
2n to obtain

(1) ≤ C

ρ

∥∥A[(θφR)∗ϕε]
∥∥
Ln(Rn) ‖ϕε‖L n

n+σ−1 (Rn)

(
‖φR‖L∞‖~∇θ‖L2(Rn) + ‖~∇φR‖

L
2n
α (Rn)

‖θ‖
L

2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤
CR,ε
ρ
‖(θφR) ∗ ϕε‖Ln(Rn)

(
‖~∇θ‖L2(Rn) + ‖θ‖

L
2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,

where we used the fact that the operator A is bounded in the Lebesgue spaces.

Now, by the Young inequalities we have

(1) ≤
CR,ε
ρ
‖θφR‖L1(Rn)‖ϕε‖Ln(Rn)

(
‖~∇θ‖L2(Rn) + ‖θ‖

L
2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤
CR,ε
ρ
‖θ‖

L
2n
n−α (Rn)

‖φR‖
L

2n
n+α (Rn)

(
‖~∇θ‖L2(Rn) + ‖θ‖

L
2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,
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where we used the Hölder inequalities with 1 = n−α
2n + n+α

2n (recall that 0 < α < 2 and that

n ≥ 2). Now, by the Sobolev embedding Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn), we can write

(1) ≤
CR,ε
ρ
‖θ‖

Ḣ
α
2 (Rn)

(
‖θ‖Ḣ1(Rn) + ‖θ‖

Ḣ
α
2 (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) .

We remark that we have ‖ · ‖
Ḣ
α
2 (Rn) ≤ ‖ · ‖Eρ and ‖ · ‖Ḣ1(Rn) ≤

1√
ρ‖ · ‖Eρ (see formula (A.7)), so

we can write

(1) ≤
CR,ε
ρ
‖θ‖Eρ

(
1
√
ρ
‖θ‖Eρ + ‖θ‖Eρ

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤
CR,ε
ρ

(
1 +

1
√
ρ

)
‖θ‖Eρ‖θ‖Eρ +

C

ρ
‖f‖

Ḣ−
α
2 (Rn) , (A.9)

and this estimate ends the study of the first term of (A.8).

• For the term (2) in (A.8) we write

(2) ≤
∥∥∥Lρ ((A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥
Ḣ
α
2 (Rn)

+ ‖Lρ (f)‖
Ḣ
α
2 (Rn) .

Using the definition of the Sobolev spaces Ḣ
α
2 (Rn) and the definition of the operator Lρ given in

(A.4), for some α
2 < s < 1 (we thus have α

2 <
s+α

2
2 < 2), we can write

(2) ≤

∥∥∥∥∥∥ (−∆)
s+α2

2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
s
2

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥∥∥∥
L2(Rn)

+

∥∥∥∥∥ (−∆)
α
2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
α
4

(f)

∥∥∥∥∥
L2(Rn)

,

and since α
2 <

s+α
2

2 < 2 we can apply the Lemma A.1 to obain

(2) ≤ C

ρ

∥∥∥∥ 1

(−∆)
s
2

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)∥∥∥∥
L2(Rn)

+
C

ρ

∥∥∥∥ 1

(−∆)
α
4

(f)

∥∥∥∥
L2(Rn)

≤ C

ρ

∥∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)
∥∥∥
Ḣ−s(Rn)

+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) .

By the Hardy-Littlewood-Sobolev embedding L
2n
n+2s (Rn) ⊂ Ḣ−s(Rn) (recall that α

2 < s < 1 ≤ n
2

for n ≥ 2), we obtain

(2) ≤ C

ρ

∥∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)
∥∥∥
L

2n
n+2s (Rn)

+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,

now, by the Hölder inequality with n+2s
2n = s

n + 1
2 , we write

(2) ≤ C

ρ

∥∥(A[(θφR)∗ϕε] ∗ ϕε)φR
∥∥
L
n
s (Rn) ‖

~∇(θφR)‖L2(Rn) +
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤ C

ρ
‖φR‖L∞(Rn)‖A[(θφR)∗ϕε]‖Ln(Rn)‖ϕε‖L n

n+s−1 (Rn)
‖~∇(θφR)‖L2(Rn) +

C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤ Cε
ρ
‖(θφR) ∗ ϕε‖Ln(Rn)‖~∇(θφR)‖L2(Rn) +

C

ρ
‖f‖

Ḣ−
α
2 (Rn)
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where we used the Young inequalities with 1 + s
n = 1

n + n+s−1
n (recall that 0 < s < 1) and the

fact that the operator A is bounded in Lebesgue spaces. Using again the Young inequalities we
have

(2) ≤ Cε
ρ
‖θφR‖L1(Rn)‖ϕε‖Ln(Rn)

(
‖φR‖L∞‖~∇θ‖L2(Rn) + ‖~∇φR‖

L
2n
α (Rn)

‖θ‖
L

2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn)

≤
CR,ε
ρ
‖θ‖

L
2n
n−α (Rn)

‖φR‖
L

2n
n+α (Rn)

(
‖~∇θ‖L2(Rn) + ‖θ‖

L
2n
n−α (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) ,

where we applied the Hölder inequalities with 1 = n−α
2n + n+α

2n . Now, by the Sobolev embedding

Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) we obtain

(2) ≤
CR,ε
ρ
‖θ‖

Ḣ
α
2 (Rn)

(
‖~∇θ‖L2(Rn) + ‖θ‖

Ḣ
α
2 (Rn)

)
+
C

ρ
‖f‖

Ḣ−
α
2 (Rn) .

Recalling that ‖ · ‖
Ḣ
α
2 (Rn) ≤ ‖ · ‖Eρ and ‖ · ‖Ḣ1(Rn) ≤

1√
ρ‖ · ‖Eρ , we obtain

(2) ≤ CR
ρ

(
1 +

1
√
ρ

)
‖θ‖Eρ‖θ‖Eρ +

C

ρ
‖f‖

Ḣ−
α
2 (Rn) . (A.10)

Now, gathering the estimates (A.9) and (A.10) and coming back to (A.8), we have proven the control

‖TR,ρ,ε(θ)‖Eρ ≤
CR√
ρ

(
1 +

1
√
ρ

)
‖θ‖Eρ‖θ‖Eρ +

C
√
ρ
‖f‖

Ḣ−
α
2 (Rn) ,

which gives the continuity of the operator TR,ρ,ε in the space Eρ (recall that by hypothesis we have
f ∈ Ḣ−

α
2 (Rn)) and Proposition A.1 is now proven. �

Proposition A.2 (Compactness) The application TR,ρ,ε is compact in the space Eρ.

Proof. We consider now a bounded sequence (θn)n∈N in Eρ (i.e. we have ‖θn‖Eρ < +∞ uniformly)
and we shall prove that there exists a subsequence TR,ρ,ε(θnk)k∈N which converges strongly in Eρ.

We first remark that for some fixed R > 0, the sequence (θnφR)n∈N is also bounded in the space
Eρ. Indeed, we have

‖θnφR‖Eρ =
√
ρ‖θnφR‖Ḣ1(Rn) + ‖θnφR‖Ḣ α

2 (Rn) =
√
ρ‖~∇(θnφR)‖L2(Rn) + ‖(−∆)

α
2 (θnφR)‖L2(Rn),

and by usual Leibniz rule and the Hölder inequalities with 1
2 = n−α

2n + α
2n , we have

‖θnφR‖Eρ ≤
√
ρ

(
‖φR‖L∞(Rn)‖~∇θn‖L2(Rn) + ‖~∇φR‖

L
2n
α (Rn)

‖θn‖
L

2n
n−α (Rn)

)
+ ‖(−∆)

α
2 (θnφR)‖L2(Rn),

and by the Sobolev embedding Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) we can write

‖θnφR‖Eρ ≤
√
ρ
(
CR‖θn‖Ḣ1(Rn) + CR‖θn‖Ḣ α

2 (Rn)

)
+ ‖(−∆)

α
2 (θnφR)‖L2(Rn),

and since ‖ · ‖
Ḣ
α
2 (Rn) ≤ ‖ · ‖Eρ and ‖ · ‖Ḣ1(Rn) ≤

1√
ρ‖ · ‖Eρ we have

‖θnφR‖Eρ ≤ CR
(
‖θn‖Eρ +

√
ρ‖θn‖Eρ

)
+ ‖(−∆)

α
2 (θnφR)‖L2(Rn).
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For the second term of the right-hand side above we will use the fractional Leibniz rule and we obtain

‖θnφR‖Eρ ≤ CR (1 +
√
ρ) ‖θn‖Eρ +

(
‖(−∆)

α
2 θn‖L2(Rn)‖φR‖L∞(Rn) + ‖θn‖

L
2n
n−α (Rn)

‖(−∆)
α
2 φR‖

L
2n
α (Rn)

)
≤ CR (1 +

√
ρ) ‖θn‖Eρ + CR

(
‖(−∆)

α
2 θn‖L2(Rn) + ‖θn‖

L
2n
n−α (Rn)

)
,

using again the embedding Ḣ
α
2 (Rn) ⊂ L

2n
n−α (Rn) and the definition of the Sobolev space Ḣ

α
2 (Rn), we

obtain

‖θnφR‖Eρ ≤ CR (1 +
√
ρ) ‖θn‖Eρ + CR‖θn‖Ḣ α

2 (Rn)

≤ CR (1 +
√
ρ) ‖θn‖Eρ + CR‖θn‖Eρ < +∞,

and we conclude that the sequence (θnφR)n∈N is also bounded in Eρ.

Now, with this remark at hand and for a fixed R > 0, we can assume without loss of generality
that, for all n ∈ N, we have supp(θnφR) ⊂ B(0, 4R). Since we are working in the space Ḣ

α
2 (Rn) with

0 < α < 2, by the Rellich-Kondrashov lemma (see Theorem 9.16 of [3]), there exists a subsequence
(θnkφR)k∈N that converges strongly in Lploc(R

n) for 1 ≤ p < 2n
n−α . This argument will lead us to the

wished compactness of the application TR,ρ,ε as long as we can estimate ‖TR,ρ,ε(θn)‖Eρ in terms of
suitable Lploc norms.

Then, from (A.8) we can write

‖TR,ρ,ε(θn)‖Eρ =
√
ρ
∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR) + f

)∥∥∥
Ḣ1(Rn)

+
∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR) + f

)∥∥∥
Ḣ
α
2 (Rn)

≤ √
ρ
∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR)

)∥∥∥
Ḣ1

(Rn)︸ ︷︷ ︸
(α)

+
√
ρ ‖Lρ (f)‖Ḣ1(Rn) (A.11)

+
∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR)

)∥∥∥
Ḣ
α
2 (Rn)︸ ︷︷ ︸

(β)

+ ‖Lρ (f)‖
Ḣ
α
2 (Rn) , (A.12)

since the terms that contain the external force do not intervene in the study of the compactness and
since we have already proven that the quantities ‖Lρ (f)‖Ḣ1(Rn) and ‖Lρ (f)‖

Ḣ
α
2 (Rn) are bounded by the

information available over f (indeed, we just proved the controls ‖Lρ (f)‖Ḣ1(Rn) ≤
C
ρ ‖f‖Ḣ−α2 (Rn) and

‖Lρ (f)‖
Ḣ
α
2 (Rn) ≤

C
ρ ‖f‖Ḣ−α2 (Rn)), we will focus our study in the terms (α) and (β) of the expression

above.

• For the term (α) in (A.11), using the divergence free condition for the quantity A[(θφR)∗ϕε] ∗ ϕε
we remark that we have the following identity

(A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR) = div
(
A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

)
(A.13)

−A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR),
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so we can write∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR)
)∥∥∥

Ḣ1(Rn)
≤

∥∥Lρ (div (A[(θnφR)∗ϕε] ∗ ϕεφ
2
Rθn

))∥∥
Ḣ1(Rn)︸ ︷︷ ︸

(α1)

+
∥∥∥Lρ (A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)

)∥∥∥
Ḣ1(Rn)︸ ︷︷ ︸

(α2)

.

Now for the term (α1) in the right-hand side above, by the definition of the operator Lρ given in
(A.4) and by the properties of the Sobolev spaces, we write

α1 =

∥∥∥∥ 1

[ρ(−∆) + (−∆)
α
2 ]
div
(
A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

)∥∥∥∥
Ḣ1(Rn)

≤ C

∥∥∥∥ (−∆)

[ρ(−∆) + (−∆)
α
2 ]

(
A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

)∥∥∥∥
L2(Rn)

≤ C

ρ

∥∥A[(θnφR)∗ϕε] ∗ ϕεφ
2
Rθn

∥∥
L2(Rn) , (A.14)

where we used the Lemma A.1 to deduce the last estimate. Since we have 2 < 2n
n−α , thus by the

Hölder inequalities, the Young inequalities and by the boundedness properties of the operator A,
we can write

α1 ≤ C

ρ

∥∥A[(θnφR)∗ϕε] ∗ ϕε
∥∥
L∞(Rn)

∥∥φ2Rθn∥∥L2(Rn) ≤
C

ρ

∥∥A[(θnφR)∗ϕε]
∥∥
L2(Rn) ‖ϕε‖L2(Rn)

∥∥φ2Rθn∥∥L2(Rn)

≤
CR,A,ε
ρ
‖(θnφR) ∗ ϕε‖L2(Rn)‖θnφR‖L2(Rn) ≤

CR,A,ε
ρ
‖θnφR‖L2(Rn)‖θnφR‖L2(Rn)

≤
CR,A,ε
ρ
‖θnφR‖L2(B(0,4R))‖θnφR‖L2(B(0,4R)), (A.15)

where we used the support properties of the function φR. Since the sequence (θnφR)n∈N is
bounded in the space Ḣ

α
2 (Rn) and since 2 < 2n

n−α , we can extract a subsequence (θnkφR)k∈N that

converges strongly in the space L2(B(0, 4R)) and this will provide us the wished compactness
property associated to the term (α1).

For the term (α2) we proceed as follows: for some 0 < s < 1 such that α < 1 + s < 2 we write

α2 =

∥∥∥∥∥ (−∆)
1+s
2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
s
2

(
A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)

)∥∥∥∥∥
L2(Rn)

≤ C

ρ

∥∥∥A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)
∥∥∥
Ḣ−s(Rn)

≤ C

ρ

∥∥∥A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)
∥∥∥
L

2n
n+2s

,

where we applied the Lemma A.1 and we used the definition of the Sobolev space Ḣ−s(Rn) as

well as the embedding L
2n
n+2s (Rn) ⊂ Ḣ−s(Rn). Now, by the Hölder inequalities with n+2s

2n = 1
2 + s

n

15



and with the Young inequalities with 1 + s
n = 1

2 + n+2s
2n , we have

α2 ≤ C

ρ

∥∥A[(θφR)∗ϕε] ∗ ϕε
∥∥
L
n
s (Rn)

∥∥∥~∇φR∥∥∥
L∞(Rn)

‖θnφR‖L2(Rn)

≤ CR
ρ
‖A[(θφR)∗ϕε]‖L2(Rn)‖ϕε‖

L
2n
n+2s (Rn)

‖θnφR‖L2(Rn)

≤
CR,A,ε
ρ
‖(θφR) ∗ ϕε‖L2(Rn)‖θnφR‖L2(Rn) ≤

CR,A,ε
ρ
‖θφR‖L2(Rn)‖θnφR‖L2(Rn)

≤
CR,A,ε
ρ
‖θφR‖L2(B(0,4R))‖θnφR‖L2(B(0,4R)),

where we used the boundedness of the operator A and the support properties of the function φR.
With this control we can deduce as before the wished compactness property associated to the
term (α2).

With these compactness properties for the terms (α1) and (α2), we can easily deduce the com-
pactness of the quantity (α) given in (A.11).

• For the term (β) in (A.12) we have, using the decomposition (A.13):∥∥∥Lρ ((A[(θnφR)∗ϕε] ∗ ϕε)φR · ~∇(θnφR)
)∥∥∥

Ḣ
α
2 (Rn)

≤
∥∥Lρ (div (A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

))∥∥
Ḣ
α
2 (Rn)︸ ︷︷ ︸

(β1)

+
∥∥∥Lρ (A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)

)∥∥∥
Ḣ
α
2 (Rn)︸ ︷︷ ︸

(β2)

,

and we will study these terms separately.

For the quantity (β1) above we write, by the definition of the operator Lρ given in (A.4) and by
the properties of the Sobolev spaces:

β1 =

∥∥∥∥ 1

[ρ(−∆) + (−∆)
α
2 ]
div
(
A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

)∥∥∥∥
Ḣ
α
2 (Rn)

≤

∥∥∥∥∥∥ (−∆)
1+α2

2

[ρ(−∆) + (−∆)
α
2 ]

(
A[(θnφR)∗ϕε] ∗ ϕεφ

2
Rθn

)∥∥∥∥∥∥
L2(Rn)

,

since α
2 <

1+α
2

2 < 1, by the Lemma A.1, we have the estimate

β1 ≤
C

ρ

∥∥A[(θnφR)∗ϕε] ∗ ϕεφ
2
Rθn

∥∥
L2(Rn) ,

at this point, following the same arguments as above (see (A.14)-(A.15)), we obtain the control

β1 ≤
CR,A,ε
ρ
‖θnφR‖L2(B(0,4R))‖θnφR‖L2(B(0,4R)),

from which we deduce the compactness property associated to the term (β1).
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For the term (β2), we have as before:

β2 =

∥∥∥∥∥ (−∆)
α
2

[ρ(−∆) + (−∆)
α
2 ]

1

(−∆)
α
4

(
A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)

)∥∥∥∥∥
L2(Rn)

≤ C

ρ

∥∥∥A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)
∥∥∥
Ḣ−

α
2 (Rn)

≤ C

ρ

∥∥∥A[(θnφR)∗ϕε] ∗ ϕε · (~∇φR)(θnφR)
∥∥∥
L

2n
n+α (Rn)

,

where we used the Lemma A.1 and the Hardy-Littlewood-Sobolev inequality. Now, by the Hölder
inequality with n+α

2n = 1
2 + α

2n , we can write

β2 ≤ C

ρ

∥∥A[(θnφR)∗ϕε] ∗ ϕε
∥∥
L

2n
α (Rn)

∥∥∥~∇φR∥∥∥
L∞(Rn)

‖θnφR‖L2(Rn)

≤ C

ρ

∥∥A[(θnφR)∗ϕε]
∥∥
L2(Rn) ‖ϕε‖L 2n

n+α (Rn)

∥∥∥~∇φR∥∥∥
L∞(Rn)

‖θnφR‖L2(Rn) ,

where we used the Young inequalities with 1 + α
2n = 1

2 + n+α
2n . Since the operator A is bounded,

and by the properties of the function φR, we have

β2 ≤
CR,ε
ρ

∥∥A[(θnφR)∗ϕε]
∥∥
L2(Rn) ‖θnφR‖L2(Rn) ≤

CR,A,ε
ρ
‖(θnφR) ∗ ϕε‖L2(Rn) ‖θnφR‖L2(Rn)

≤
CR,A,ε
ρ
‖θnφR‖L2(B(0,4R))‖θnφR‖L2(B(0,4R)),

from which we deduce the compactness property associated to the term (β2).

We have obtained the compactness property for the terms (β1) and (β2) defined above and we
deduce then the compactness property for the term (β) given in (A.12).

From this separated study of the quantities (α) and (β), we finally obtain the compactness of the
operator TR,ρ,ε in the space Eρ and this ends the proof of the Proposition A.2. �

Proposition A.3 (A priori estimates) In the setting of the space Eρ, if θ = λTR,ρ,ε(θ) for any
λ ∈ [0, 1], then we have the control ‖θ‖Eρ ≤M .

Proof. If we have for all 0 ≤ λ ≤ 1 the identity

θ = λTR,ρ,ε(θ),

by the definition of the operator TR,ρ,ε we can write

θ = λ

[
1

[ρ(−∆) + (−∆)
α
2 ]

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR) + f

)]
,

we then obtain the expression

[ρ(−∆) + (−∆)
α
2 ]θ = λ

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)
+ λf,

and we have

ρ

∫
Rn

[(−∆)θ]θdx+

∫
Rn

[(−∆)
α
2 θ]θdx = λ

∫
Rn

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)
θdx+ λ

∫
Rn
fθdx.
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Since div(A[(θφR)∗ϕε] ∗ ϕε) = 0, we obtain by an integration by parts that∫
Rn

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)
θdx = −

∫
Rn

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)
θdx,

from which we deduce that ∫
Rn

(
(A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR)

)
θdx = 0,

so we obtain the identity

ρ‖θ‖2
Ḣ1(Rn) + ‖θ‖2

Ḣ
α
2 (Rn)

= λ

∫
Rn
fθdx.

Now, by the Ḣ
α
2 − Ḣ−

α
2 duality we can write

ρ‖θ‖2
Ḣ1(Rn) + ‖θ‖2

Ḣ
α
2 (Rn)

≤ λ‖f‖
Ḣ−

α
2 (Rn)‖θ‖Ḣ α

2 (Rn),

and by the Young inequalities we have

ρ‖θ‖2
Ḣ1(Rn) + ‖θ‖2

Ḣ
α
2 (Rn)

≤ λ

2
‖f‖2

Ḣ−
α
2 (Rn)

+
λ

2
‖θ‖2

Ḣ
α
2 (Rn)

,

which can be rewritten as

ρ‖θ‖2
Ḣ1(Rn) +

(
1− λ

2

)
‖θ‖2

Ḣ
α
2 (Rn)

≤ λ

2
‖f‖2

Ḣ−
α
2 (Rn)

.

Finally, since 0 ≤ λ ≤ 1 and since f ∈ Ḣ−
α
2 (Rn) by hypothesis, we can write

ρ‖θ‖2
Ḣ1(Rn) + ‖θ‖2

Ḣ
α
2 (Rn)

≤ ‖f‖2
Ḣ−

α
2 (Rn)

, (A.16)

since f ∈ Ḣ−
α
2 (Rn) by hypothesis, we deduce the wished estimate,

‖θ‖Eρ ≤M < +∞,

and the proof of the Proposition A.3 is complete. �

Remark A.1 Note that the estimate (A.16) gives a uniform control (in 0 < ρ, ε < 1 and in R > 1)
of the quantity ‖θ‖

Ḣ
α
2 (Rn).

End of the proof of the Theorem 1.

Gathering Propositions A.1, A.2 and A.3, we can apply the Theorem 3 to obtain a solution θ = θρ,ε,R
of the equation (A.1). Now, in order to recover a solution of the original equation (1.1) we need to
take the limits ρ, ε→ 0 and R→ +∞. To do so, we will exploit the uniform estimate (A.16), indeed,
since θ is uniformly bounded by (A.16) in the space Ḣ

α
2 (Rn), by the Banach-Alaoglu theorem there

exists a limit θρ,ε,R −→
ρ,ε→0

θR in the weak-∗ sense. Furthermore we have (−∆)
α
2 θρ,ε,R −→

ρ,ε→0
(−∆)

α
2 θR

in the sense of tempered distributions. For the non linear term (A[(θφR)∗ϕε] ∗ ϕε)φR · ~∇(θφR), we
will need some local strong convergence in a suitable Lebesgue space, which can be obtained by the
Rellich-Kondrashov theorem since we have the uniform control (A.16). We can thus obtain, in a weak
sense the limit (A[(θρ,ε,RφR)∗ϕε] ∗ϕε)φR · ~∇(θρ,ε,RφR) −→

ρ,ε→0
(A[θRφR]φR) · ~∇(θRφR). These arguments are

classical for studying nonlinear terms. Now we must consider the limit when R→ +∞ and for this we
can proceed in the same manner as before since the control (A.16) is also uniform in R. Thus, with
this arguments, we obtain a solution θ ∈ Ḣ

α
2 (Rn) which is a weak solution of the equation

(−∆)
α
2 θ − A[θ] · ~∇θ − f = 0,

and now the proof of the Theorem 1 is complete. �
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B Regularity

The problem of the regularity of weak solutions to the system (1.1) is of course related to the power
of the fractional Laplacian 0 < α < 2. Our starting point is a function θ ∈ Ḣ

α
2 (Rn) that satisfies in

the weak sense the equation (1.1) where, for the sake of simplicity we will assume from now on that
the external force f is null.

We start with the case n+2
3 < α < 2 and we rewrite the equation (1.1) as follows:

θ =
1

(−∆)
α
2

A[θ] · ~∇θ =
1

(−∆)
α
2

div(A[θ]θ),

where we used the divergence free property of A. Now, for some index σ > 0 that will be defined later,
we write

‖(−∆)
σ
2 θ‖L2(Rn) =

∥∥∥(−∆)
σ−α
2 div(A[θ]θ)

∥∥∥
L2(Rn)

≤ C‖A[θ]θ‖Ḣσ−α+1(Rn).

At this point we apply the product law given in the Lemma 2.3 to obtain (since θ ∈ Ḣ
α
2 (Rn) and

since the operator A is bounded in Sobolev spaces):

‖A[θ]θ‖Ḣσ−α+1(Rn) ≤ C‖A[θ]‖Ḣ α
2 (Rn)‖θ‖Ḣ α

2 (Rn) ≤ C‖θ‖Ḣ α
2 (Rn)‖θ‖Ḣ α

2 (Rn) < +∞, (B.1)

as long as σ− α+ 1 = α− n
2 , from which we deduce that σ = 2α− n

2 − 1. This is a gain of regularity

with respect to the information θ ∈ Ḣ
α
2 (Rn) as long as we have σ = 2α − n

2 − 1 > α
2 , i.e. if we have

α > n+2
3 which is the case studied here. Once we obtain this first gain of regularity, by iterating this

process we easily obtain that the solutions of the equation (1.1) are smooth.

We consider now the case 1 < α ≤ n+2
3 . Here the general framework θ ∈ Ḣ

α
2 (Rn) seems to be not

enough to obtain a gain of regularity when applying the Lemma 2.3 in the estimate (B.1) above. For
simplicity we will use here an additional hypothesis given by θ ∈ L∞(Rn) and instead of Lemma 2.3
we use the Leibniz fractional inequality given in Lemma 2.2. Thus, instead of (B.1) we write:

‖A[θ]θ‖Ḣσ−α+1(Rn) ≤ C(‖A[θ]‖Ḣσ−α+1(Rn)‖θ‖L∞(Rn) + ‖A[θ]‖L∞(Rn)‖θ‖Ḣσ−α+1(Rn)).

We will assume moreover that the operator A is also bounded in the space L∞(Rn), so we can write

‖A[θ]θ‖Ḣσ−α+1(Rn) ≤ C‖θ‖Ḣσ−α+1(Rn)‖θ‖L∞(Rn),

which is a finite quantity as long as σ − α + 1 = α
2 , which gives σ = 3

2α − 1. But since 1 < α we

have σ > α
2 and we have obtained a gain of regularity as we have proved that θ ∈ Ḣσ(Rn). Again, by

iteration we obtain that the solutions of the equation (1.1) are smooth.

The case 0 < α ≤ 1 is much harder to study and, to the best of our knowledge, it is still an open
problem.
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