Gas permeability and gamma ray shielding properties of concrete for nuclear applications - Archive ouverte HAL
Article Dans Une Revue Nuclear Engineering and Design Année : 2024

Gas permeability and gamma ray shielding properties of concrete for nuclear applications

Résumé

Concrete used in nuclear applications faces significant durability challenges due to degradation from radiation, thermal stresses, and chemical reactions. These issues highlight the critical need for impermeable concrete shields to prevent radioactive leaks and protect against harmful radiation. This study examines how concrete composition affects gas permeability and gamma radiation shielding properties. Three coarse aggregates—amphibolite (reference), magnetite, and serpentine—and two cement types (ordinary and slag) were tested, with concrete densities ranging from 2309 to 3538 kg/m3. Gas permeability was measured using a Cembureau-type constant head permeameter, and gamma shielding was assessed through the linear attenuation coefficient (µ) and half-value layer (HVL) at 137Cs decay energies. The results revealed significant variations in gas permeability and gamma ray shielding based on aggregate and cement type, with observable relationships between gas permeability, HVL, and concrete density. The results obtained from the presented research will contribute to increasing the safety, durability and cost-effectiveness of concrete constructions and maintenance of nuclear facilities.

Dates et versions

hal-04796818 , version 1 (21-11-2024)

Identifiants

Citer

Daria Jóźwiak-Niedźwiedzka, Marta Choinska Colombel, Aneta Brachaczek, Mariusz Dąbrowski, Jakub Ośko, et al.. Gas permeability and gamma ray shielding properties of concrete for nuclear applications. Nuclear Engineering and Design, 2024, 429, pp.113616. ⟨10.1016/j.nucengdes.2024.113616⟩. ⟨hal-04796818⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More