Unraveling the Nature of Lasing Emission from Hybrid Silicon Nitride and Colloidal Nanocrystal Photonic Crystals with Low Refractive Index Contrast - Archive ouverte HAL
Article Dans Une Revue ACS photonics Année : 2024

Unraveling the Nature of Lasing Emission from Hybrid Silicon Nitride and Colloidal Nanocrystal Photonic Crystals with Low Refractive Index Contrast

Résumé

Silicon nitride is used for its low optical loss and high thermal stability, making it a suitable platform for visible-light applications in integrated photonic devices. However, its application has been limited due to inefficient light emission, a problem addressed by integrating various types of light emitters onto the platform. In particular, the integration of solution-processable colloidal nanocrystals (NCs) as optical gain materials onto the silicon nitride platform is a promising route but requires a more solid theoretical footing. By leveraging 2D surface-emitting photonic crystal structures combined with NCs, we effectively confine and manipulate light to achieve lasing from green to red. Building on this, we model the light–matter interactions of the low index contrast NC/nitride platform, validated by extensive experimental validations through Fourier imaging techniques, revealing the full photonic band structure and showing clear mode congestion. These comprehensive studies confirm the potential of hybrid NC-based structures for fully integrated on-chip laser applications and indicate routes for further improvement.
Fichier sous embargo
Fichier sous embargo
0 11 3
Année Mois Jours
Avant la publication
mardi 25 novembre 2025
Fichier sous embargo
mardi 25 novembre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04792770 , version 1 (25-11-2024)

Identifiants

Citer

Ivo Tanghe, Tom Vandekerckhove, Margarita Samoli, Amelia Waters, Dulanjan Harankahage, et al.. Unraveling the Nature of Lasing Emission from Hybrid Silicon Nitride and Colloidal Nanocrystal Photonic Crystals with Low Refractive Index Contrast. ACS photonics, 2024, 11 (11), pp.4906-4915. ⟨10.1021/acsphotonics.4c01410⟩. ⟨hal-04792770⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More