Path Planning for Unmanned Aerial Vehicles in Dynamic Environments: A Novel Approach Using Improved A * and Grey Wolf Optimizer - Archive ouverte HAL
Article Dans Une Revue World Electric Vehicle Journal Année : 2024

Path Planning for Unmanned Aerial Vehicles in Dynamic Environments: A Novel Approach Using Improved A * and Grey Wolf Optimizer

Résumé

Unmanned aerial vehicles (UAVs) play pivotal roles in various applications, from surveillance to delivery services. Efficient path planning for UAVs in dynamic environments with obstacles and moving landing stations is essential to ensure safe and reliable operations. In this study, we propose a novel approach that combines the A* algorithm with the grey wolf optimizer (GWO) for path planning, referred to as GW-A*. Our approach enhances the traditional A algorithm by incorporating weighted nodes, where the weights are determined based on the distance from obstacles and further optimized using GWO. A simulation using dynamic factors such as wind direction and wind speed, which affect the quadrotor UAV in the presence of obstacles, was used to test the new approach, and we compared it with the A* algorithm using various heuristics. The results showed that GW-A* outperformed A* in most scenarios with high and low wind speeds, offering more efficient paths and greater adaptability.
Fichier principal
Vignette du fichier
wevj-15-00531.pdf (498.91 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04790333 , version 1 (19-11-2024)

Licence

Identifiants

Citer

Ali Haidar Ahmad, Oussama Zahwe, Abbass Nasser, Benoit Clement. Path Planning for Unmanned Aerial Vehicles in Dynamic Environments: A Novel Approach Using Improved A * and Grey Wolf Optimizer. World Electric Vehicle Journal, 2024, 15 (11), ⟨10.3390/wevj15110531⟩. ⟨hal-04790333⟩
3 Consultations
0 Téléchargements

Altmetric

Partager

More