Differential uniformity of polynomials of degree 10
Résumé
We prove that polynomials of degree 10 over finite fields of even characteristic with some conditions on theirs coefficients have a differential uniformity greater than or equal to 6 over ${\mathbb F}_{2^n}$ for all $n$ sufficiently large.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|