Shock-driven amorphization and melt in Fe$_2$O$_3$ - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2024

Shock-driven amorphization and melt in Fe$_2$O$_3$

David Mcgonegle
  • Function : Author

Abstract

We present measurements on Fe$_2$O$_3$ amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved in situ x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a non-crystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(10) and 151(10) GPa, indicative of a phase change. Present DFT+$U$ calculations of temperatures along Fe$_2$O$_3$ Hugoniot are in agreement with SESAME 7440 and indicate relatively low temperatures, below 2000 K, up to 150 GPa. The non-crystalline diffuse scattering is thus consistent with the - as yet unreported - shock amorphization of Fe$_2$O$_3$ between 122(3) and 145(10) GPa, followed by an amorphous-to-liquid transition above 151(10) GPa. Upon release, a non-crystalline phase is observed alongside crystalline $α$-Fe$_2$O$_3$. The extracted structure factor and pair distribution function of this release phase resemble those reported for Fe$_2$O$_3$ melt at ambient pressure.
Fichier principal
Vignette du fichier
2408.17204v1.pdf (1.31 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04789575 , version 1 (21-11-2024)

Identifiers

Cite

Céline Crépisson, Alexis Amouretti, Marion Harmand, Chrystèle Sanloup, Patrick Heighway, et al.. Shock-driven amorphization and melt in Fe$_2$O$_3$. 2024. ⟨hal-04789575⟩
0 View
0 Download

Altmetric

Share

More