Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Crystallography Année : 2024

Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

Victor Poline
Pierre Bordet
Nils Blanc
Pauline Martinetto

Résumé

Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called `applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS , and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R -weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results.
Fichier principal
Vignette du fichier
publie_ J-Appl-Cryst(2024)57,831-841.pdf (5.39 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04788667 , version 1 (18-11-2024)

Licence

Identifiants

Citer

Victor Poline, Ravi Raj Purohit Purushottam Raj Purohit, Pierre Bordet, Nils Blanc, Pauline Martinetto. Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data. Journal of Applied Crystallography, 2024, 57 (3), pp.831-841. ⟨10.1107/s1600576724003704⟩. ⟨hal-04788667⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More