HOROFUNCTION EXTENSION AND METRIC COMPACTIFICATIONS
Compactification métrique et horofonctions
Résumé
A necessary and sufficient condition for the horofunction extension of a metric space to be a compactification is hereby established. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromov-compactifiable under any renorming if and only if it does not contain an isomorphic copy of ℓ1 . In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.
Mots clés
Metric space normed space compactification horofunction extension ℓ 1 -criterium AMS Subject Classification: Primary 53C23 54D35 46B03
Secondary 46B20 51F99
Metric space
normed space
compactification
horofunction extension
ℓ 1 -criterium AMS Subject Classification: Primary 53C23
54D35
46B03
Secondary 46B20
51F99
Origine | Fichiers produits par l'(les) auteur(s) |
---|