Some rigidity results for polynomial automorphisms of C^2 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Some rigidity results for polynomial automorphisms of C^2

Résumé

We prove several new rigidity results for automorphisms of C^2 with positive entropy. A first result is that a complex slice of the (forward or backward) Julia set is never a smooth, or even rectifiable, curve. We also show that such an automorphism cannot preserve a global holomorphic foliation, nor a real-analytic foliation with complex leaves. These results are used to show that under mild assumptions, two real-analytically conjugate automorphisms are polynomially conjugate. For mappings defined over a number field, we also study the fields of definition of multipliers of saddle periodic orbits.
Fichier principal
Vignette du fichier
rigidity_arxiv1.pdf (603.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04786232 , version 1 (15-11-2024)

Identifiants

Citer

Serge Cantat, Romain Dujardin. Some rigidity results for polynomial automorphisms of C^2. 2024. ⟨hal-04786232⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More