A DERIVED LAGRANGIAN FIBRATION ON THE DERIVED CRITICAL LOCUS - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2022

A DERIVED LAGRANGIAN FIBRATION ON THE DERIVED CRITICAL LOCUS

Résumé

We study the symplectic geometry of derived intersections of Lagrangian morphisms. In particular, we show that for a functional $f : X \rightarrow \mathbb {A}_{k}^{1}$ , the derived critical locus has a natural Lagrangian fibration $\textbf {Crit}(f) \rightarrow X$ . In the case where f is nondegenerate and the strict critical locus is smooth, we show that the Lagrangian fibration on the derived critical locus is determined by the Hessian quadratic form.

Dates et versions

hal-04784799 , version 1 (15-11-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Albin Grataloup. A DERIVED LAGRANGIAN FIBRATION ON THE DERIVED CRITICAL LOCUS. Journal of the Institute of Mathematics of Jussieu, 2022, 23 (1), pp.1-35. ⟨10.1017/S147474802200041X⟩. ⟨hal-04784799⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More