Generalizations of Parisi’s replica symmetry breaking and overlaps in random energy models
Résumé
Résumé. Le modèle d'énergies aléatoires (REM) est le modèle de verre de spin le plus simple qui présente une brisure de symétrie des répliques. Il est bien connu depuis les années 80 que ses overlaps ne sont pas automoyennants et que leurs statistiques sont celles prédites par la méthode des répliques. Ces propriétés statistiques peuvent être comprises en considérant que les niveaux d'énergie les plus bas sont les points générés par un processus de Poisson de densité exponentielle. Nous montrons ici dans un premier temps comment ces statistiques d'overlaps sont modifiées lorsqu'on remplace la densité exponentielle par une somme de deux exponentielles. Une façon de concilier ces résultats avec la théorie des répliques est de permettre aux blocs de la matrice de Parisi de fluctuer. D'autres exemples où la taille de ces blocs doit fluctuer incluent les corrections de taille finie du REM, le cas des énergies discrètes et les overlaps entre deux températures. Dans tous ces cas, non seulement la taille des blocs fluctue mais elle doit prendre des valeurs complexes si l'on souhaite reproduire nos résultats obtenus directement, c'est à dire sans utiliser la méthode des répliques.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |