Function+Data Flow: A Framework to Specify Machine Learning Pipelines for Digital Twinning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Function+Data Flow: A Framework to Specify Machine Learning Pipelines for Digital Twinning

Résumé

The development of digital twins (DTs) for physical systems increasingly leverages artificial intelligence (AI), particularly for combining data from different sources or for creating computationally efficient, reduced-dimension models. Indeed, even in very different application domains, twinning employs common techniques such as model order reduction and modelization with hybrid data (that is, data sourced from both physics-based models and sensors). Despite this apparent generality, current development practices are ad-hoc, making the design of AI pipelines for digital twinning complex and time-consuming. Here we propose Function+Data Flow (FDF), a domain-specific language (DSL) to describe AI pipelines within DTs. FDF aims to facilitate the design and validation of digital twins. Specifically, FDF treats functions as first-class citizens, enabling effective manipulation of models learned with AI. We illustrate the benefits of FDF on two concrete use cases from different domains: predicting the plastic strain of a structure and modeling the electromagnetic behavior of a bearing.

Fichier principal
Vignette du fichier
CGE24.pdf (784.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04777066 , version 1 (15-11-2024)

Identifiants

Citer

Eduardo de Conto, Blaise Genest, Arvind Easwaran. Function+Data Flow: A Framework to Specify Machine Learning Pipelines for Digital Twinning. 1st ACM International Conference on AI-Powered Software, 2024, Porto de Galinhas, Brazil. pp.19 - 27, ⟨10.1145/3664646.3664759⟩. ⟨hal-04777066⟩
2 Consultations
2 Téléchargements

Altmetric

Partager

More