Multiphase guaiacol photooxidation: Fenton reactions, brown carbon, and secondary organic aerosol formation in suspended aerosol particles
Résumé
Guaiacol, present in wood smoke, readily forms secondary organic aerosol (SOA), and, in the aqueous phase, brown carbon (BrC) species. Here, BrC is produced in an illuminated chamber containing guaiacol(g), HOOH(g) as an OH radical source, and either deliquesced salt particles or guaiacol SOA at 50% relative humidity. BrC production slows without an OH source (HOOH), likely due to low levels of radical generation by photosensitization, perhaps involving surface-adsorbed guaiacol and dissolved oxygen. With or without HOOH, BrC mass absorption coefficients at 365 nm generated by the guaiacol + OH reaction reach a maximum at ∼6 h of atmospheric OH exposure, after which photobleaching becomes dominant. In the presence of soluble iron but no HOOH, more BrC is produced, likely due to insoluble polymer production observed in previous studies. However, with both soluble iron and HOOH (enabling Fenton chemistry), significantly less SOA and BrC are produced due to very high oxidation rates, and the average SOA carbon oxidation state reaches 2, indicating carboxylate products like oxalate. These results indicate that SOA and BrC formation by guaiacol photooxidation can take place over a wider range of atmospheric conditions than previously thought and that the effects of iron(II) depend on HOOH. Multiphase guaiacol photooxidation likely makes a significant contribution to producing highly oxidized SOA material in smoke plumes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|