AI-FSM: Towards Functional Safety Management for Artificial Intelligence-based Critical Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

AI-FSM: Towards Functional Safety Management for Artificial Intelligence-based Critical Systems

Javier Fernández
Irune Agirre
Jon Perez-Cerrolaza
Lorea Belategi
Ana Adell
  • Fonction : Auteur
  • PersonId : 1437357
Carlo Donzella

Résumé

This paper introduces additional systematic steps, actions, and technical considerations intending to extend conventional Functional Safety Management (FSM) for developing safety-critical systems that integrate Artificial Intelligence (AI). The proposed approach begins by outlining a safety lifecycle for safety-critical systems incorporating AI, based on the traditionally adopted V-model lifecycle. This encompasses essential phases associated with AI integration that require careful attention. To achieve this goal, the paper defines the fundamental procedures of AI-FSM, aiming to facilitate systematic failure avoidance in AI-based safety-critical systems.
Fichier principal
Vignette du fichier
CARS2024_paper_7.pdf (246.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04769949 , version 1 (06-11-2024)

Identifiants

  • HAL Id : hal-04769949 , version 1

Citer

Javier Fernández, Irune Agirre, Jon Perez-Cerrolaza, Lorea Belategi, Ana Adell, et al.. AI-FSM: Towards Functional Safety Management for Artificial Intelligence-based Critical Systems. CARS@EDCC2024 Workshop - Critical Automotive applications: Robustness & Safety, Apr 2024, Leuven, Belgium. ⟨hal-04769949⟩
0 Consultations
0 Téléchargements

Partager

More