Spatial regularity for general yield criteria in dynamic and quasi-static perfect plasticity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Spatial regularity for general yield criteria in dynamic and quasi-static perfect plasticity

Résumé

This work addresses the question of regularity of solutions to evolutionary (quasi-static and dynamic) perfect plasticity models. Under the assumption that the elasticity set is a compact convex subset of deviatoric matrices, with $C^2$ boundary and positive definite second fundamental form, it is proved that the Cauchy stress admits spatial partial derivatives that are locally square integrable. In the dynamic case, a similar regularity result is established for the velocity as well. In the latter case, one-dimensional counterexamples show that, although solutions are Sobolev in the interior of the domain, singularities may appear at the boundary and the Dirichlet condition may fail to be attained.
Fichier principal
Vignette du fichier
BMG-30-10-2024.pdf (480.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04766644 , version 1 (05-11-2024)

Identifiants

Citer

Jean-François Babadjian, Alessandro Giacomini, Maria Giovanna Mora. Spatial regularity for general yield criteria in dynamic and quasi-static perfect plasticity. 2024. ⟨hal-04766644⟩
27 Consultations
8 Téléchargements

Altmetric

Partager

More