Seeing and Hearing What Has Not Been Said: A multimodal client behavior classifier in Motivational Interviewing with interpretable fusion - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Seeing and Hearing What Has Not Been Said: A multimodal client behavior classifier in Motivational Interviewing with interpretable fusion

Entendre et voir ce qui n'a pas été dit : A classificateur multimodal de comportement de clients d'Interview Motivationnelle avec fusion interprétable

Résumé

Motivational Interviewing (MI) is an approach to therapy that emphasizes collaboration and encourages behavioral change. To evaluate the quality of an MI conversation, client utterances can be classified using the MISC code as either Change Talk (CT), Sustain Talk (ST), or Follow/Neutral (F/N). The proportion of CT in an MI conversation positively correlates with therapy outcomes, making accurate classification of client utterances essential. This paper presents a classifier that accurately distinguishes between the three MISC classes (CT, ST, and F/N), leveraging multimodal features such as text, prosody, and facial expressivity. We annotate the publicly available AnnoMI dataset to train our model to collect multimodal information. Furthermore, we identify the modality that contributes most to the decision-making process, providing valuable insights into the interplay of different modalities during an MI conversation.
Fichier principal
Vignette du fichier
2309.14398v2.pdf (1.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04761785 , version 1 (31-10-2024)

Identifiants

Citer

Lucie Galland, Catherine Pelachaud, Florian Pecune. Seeing and Hearing What Has Not Been Said: A multimodal client behavior classifier in Motivational Interviewing with interpretable fusion. 2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG 2024), May 2024, Istanbul, Turkey. pp.1-9, ⟨10.1109/FG59268.2024.10581979⟩. ⟨hal-04761785⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More