NeoMaPy: calcul de MAP inference sur des graphs de connaissance temporels - Archive ouverte HAL
Poster De Conférence Année : 2023

NeoMaPy: calcul de MAP inference sur des graphs de connaissance temporels

Résumé

Markov Logic Networks (MLN) are used for reasoning on uncertain and inconsistent temporal data. We proposed the TMLN (Temporal Markov Logic Network) which extends them with sorts/types, weights on rules and facts, and various temporal consistencies. The NeoMaPy framework integrates it in a knowledge graph based on conflict graphs, which offers flexibility for reasoning with parametric Maximum A Posteriori (MAP) inferences, efficiency thanks to an optimistic heuristic and interactive graph visualization for results explanation.

Mots clés

Fichier non déposé

Dates et versions

hal-04754144 , version 1 (25-10-2024)

Identifiants

  • HAL Id : hal-04754144 , version 1

Citer

Victor David, Raphaël Fournier-S 'Niehotta, Nicolas Travers. NeoMaPy: calcul de MAP inference sur des graphs de connaissance temporels. BDA'23, Oct 2023, Montpellier, France. . ⟨hal-04754144⟩
12 Consultations
0 Téléchargements

Partager

More